Mechanical Behavior of Masonry Mortars Reinforced with Disposable Face Mask Strips
Abstract
:1. Introduction
2. Materials and Methods
2.1. Disposable Face Mask
2.2. Cement and Fine Aggregate
2.3. Mix Proportions, Casting, and Curing
2.4. Rehearsal Program
3. Results and Discussion
3.1. Air Content
3.2. Dry Bulk Density
3.3. Volume of Permeable Voids
3.4. Water Absorption
3.5. Compressive Strength
3.6. Flexural Strength
3.7. Split Tensile Strength
3.8. Shear Bond Strength (SBS)
4. Conclusions
- Because FM strips are hydrophobic, including them in mortar mixes increases the air content. The larger the strip size, the higher the air content.
- Overall, the progressive inclusion of FM strips in the mortar mixes reduced the mechanical properties analyzed.
- The FM contents that performed best in both types of mortars were 0.1% and 0.2%. For these amounts, the better dispersion of strips in the mixes ensured that the included air and permeable voids remained close to control mortar values. Hence, the other analyzed properties were not significantly affected.
- M1-type mortars, with shorter strips, exhibited better distribution than larger strips (M2) and, generally, showed less air inclusion. As a result, M1-type mortars showed better values for water absorption, volume of permeable voids, and dry bulk density, as well as compressive and shear bond strengths.
- For FM contents of 0.1% and 0.2%, the longer strips (M2) demonstrated better flexural and split tensile strengths due to the micro-anchor effect and their better load distribution.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prata, J.C.; Silva, A.L.P.; Walker, T.R.; Duarte, A.C.; Rocha-Santos, T. COVID-19 Pandemic Repercussions on the Use and Management of Plastics. Environ. Sci. Technol. 2020, 54, 7760–7765. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.-Q. Occurrence of Microplastics and Its Pollution in the Environment: A Review. Sustain. Prod. Consum. 2018, 13, 16–23. [Google Scholar] [CrossRef]
- Aragaw, T.A. Surgical Face Masks as a Potential Source for Microplastic Pollution in the COVID-19 Scenario. Mar. Pollut. Bull. 2020, 159, 111517. [Google Scholar] [CrossRef] [PubMed]
- Fadare, O.O.; Okoffo, E.D. COVID-19 Face Masks: A Potential Source of Microplastic Fibers in the Environment. Sci. Total Environ. 2020, 737, 140279. [Google Scholar] [CrossRef] [PubMed]
- Akber Abbasi, S.; Khalil, A.B.; Arslan, M. Extensive Use of Face Masks during COVID-19 Pandemic: (Micro-)Plastic Pollution and Potential Health Concerns in the Arabian Peninsula. Saudi J. Biol. Sci. 2020, 27, 3181–3186. [Google Scholar] [CrossRef]
- Lamba, P.; Kaur, D.P.; Raj, S.; Sorout, J. Recycling/Reuse of Plastic Waste as Construction Material for Sustainable Development: A Review. Environ. Sci. Pollut. Res. 2022, 29, 86156–86179. [Google Scholar] [CrossRef]
- Ahmed, N. Utilizing Plastic Waste in the Building and Construction Industry: A Pathway towards the Circular Economy. Constr. Build. Mater. 2023, 383, 131311. [Google Scholar] [CrossRef]
- Al-Salem, K.; Ali, M.; Almuzaiqer, R.; Al-Suhaibani, Z.; Nuhait, A. Recycling Discarded Facemasks of COVID-19 Pandemic to New Novel Composite Thermal Insulation and Sound-Absorbing Materials. Sustainability 2023, 15, 1475. [Google Scholar] [CrossRef]
- Ahmed, W.; Lim, C.W. Effective Recycling of Disposable Medical Face Masks for Sustainable Green Concrete via a New Fiber Hybridization Technique. Constr. Build. Mater. 2022, 344, 128245. [Google Scholar] [CrossRef]
- Douglas, L. Possible Use for Recycled Disposable Face Masks in Concrete. Digit. Commons. Constr. Manag. 2021, 12. [Google Scholar]
- Miah, M.J.; Pei, J.; Kim, H.; Sharma, R.; Jang, J.G.; Ahn, J. Property Assessment of an Eco-Friendly Mortar Reinforced with Recycled Mask Fiber Derived from COVID-19 Single-Use Face Masks. J. Build. Eng. 2023, 66, 105885. [Google Scholar] [CrossRef]
- Kilmartin-Lynch, S.; Saberian, M.; Li, J.; Roychand, R.; Zhang, G. Preliminary Evaluation of the Feasibility of Using Polypropylene Fibres from COVID-19 Single-Use Face Masks to Improve the Mechanical Properties of Concrete. J. Clean. Prod. 2021, 296, 126460. [Google Scholar] [CrossRef]
- Koniorczyk, M.; Bednarska, D.; Masek, A.; Cichosz, S. Performance of Concrete Containing Recycled Masks Used for Personal Protection during Coronavirus Pandemic. Constr. Build. Mater. 2022, 324, 126712. [Google Scholar] [CrossRef]
- Rajeev, P.; Ramesh, A.; Navaratnam, S.; Sanjayan, J. Using Fibre Recovered from Face Mask Waste to Improve Printability in 3D Concrete Printing. Cem. Concr. Compos. 2023, 139, 105047. [Google Scholar] [CrossRef]
- Yang, Y.; Xin, C.; Sun, Y.; Di, J.; Meng, F.; Zhou, X. Experimental Study on the Mechanical Properties of Disposable Mask Waste–Reinforced Gangue Concrete. Materials 2024, 17, 948. [Google Scholar] [CrossRef]
- Ali, M.; Opulencia, M.J.C.; Chandra, T.; Chandra, S.; Muda, I.; Dias, R.; Chetthamrongchai, P.; Jalil, A.T. An Environmentally Friendly Solution for Waste Facial Masks Recycled in Construction Materials. Sustainability 2022, 14, 8739. [Google Scholar] [CrossRef]
- Ajam, L.; Trabelsi, A.; Kammoun, Z. Valorisation of Face Mask Waste in Mortar. Innov. Infrastruct. Solut. 2022, 7, 130. [Google Scholar] [CrossRef]
- Thwe Win, T.; Jongvivatsakul, P.; Jirawattanasomkul, T.; Prasittisopin, L.; Likitlersuang, S. Use of Polypropylene Fibers Extracted from Recycled Surgical Face Masks in Cement Mortar. Constr. Build. Mater. 2023, 391, 131845. [Google Scholar] [CrossRef] [PubMed]
- Nie, Q.; Wu, B.; Wang, Z.; Dai, X.; Chen, L. Incorporation of Disposed Face Mask to Cement Mortar Material: An Insight into the Dynamic Mechanical Properties. Buildings 2024, 14, 1063. [Google Scholar] [CrossRef]
- Amin, F.; Javed, M.F.; Ahmad, I.; Asad, O.; Khan, N.; Khan, A.B.; Ali, S.; Abdullaev, S.; Awwad, F.A.; Ismail, E.A.A. Utilization of Discarded Face Masks in Combination with Recycled Concrete Aggregate and Silica Fume for Sustainable Civil Construction Projects. Sci. Rep. 2024, 14, 449. [Google Scholar] [CrossRef]
- Aziz, M.T.; Hossain, M.S.S.; Hasan, M.A.; Mohiuddin, M.A. Utilization of Face Masks and Ladle Furnace Slag in Concrete: Insights from Experimental Study. Clean. Eng. Technol. 2023, 15, 100653. [Google Scholar] [CrossRef]
- O’Dowd, K.; Nair, K.M.; Forouzandeh, P.; Mathew, S.; Grant, J.; Moran, R.; Bartlett, J.; Bird, J.; Pillai, S.C. Face Masks and Respirators in the Fight Against the COVID-19 Pandemic: A Review of Current Materials, Advances and Future Perspectives. Materials 2020, 13, 3363. [Google Scholar] [CrossRef] [PubMed]
- Battegazzore, D.; Cravero, F.; Frache, A. Is It Possible to Mechanical Recycle the Materials of the Disposable Filtering Masks? Polymers 2020, 12, 2726. [Google Scholar] [CrossRef] [PubMed]
- ASTM D792-20; Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM D570-22; Standard Test Method for Water Absorption of Plastics. ASTM International: West Conshohocken, PA, USA, 2022.
- ASTM C150/C150M-19a; Standard Specification for Portland Cement. ASTM International: West Conshohocken, PA, USA, 2019.
- NMX-C-414-ONNCCE; Building Industry-Hydraulic Cements-Specifications and Testing Methods. National Body for Standardization and Certification of Construction and Building, S.C.: Mexico City, Mexico, 2017.
- ASTM C33-07; Standard Specification for Concrete Aggregates. ASTM International: West Conshohocken, PA, USA, 2012.
- ASTM C136M-19; Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates. ASTM International: West Conshohocken, PA, USA, 2019.
- ASTM C128-22; Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate. ASTM International: West Conshohocken, PA, USA, 2022.
- ASTM C1437-20; Standard Test Method for Flow of Hydraulic Cement Mortar. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM C305-20; Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM C185-20; Standard Test Method for Air Content of Hydraulic Cement Mortar. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM C642-21; Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. ASTM International: West Conshohocken, PA, USA, 2021.
- ASTM C109-21; Standard Test Method for Compressive Strength of Hydraulic Cement Mortars(Using 2-in. or [50-Mm] Cube Specimens). ASTM International: West Conshohocken, PA, USA, 2021.
- ASTM C348-21; Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars. ASTM International: West Conshohocken, PA, USA, 2021.
- ASTM C496/C496M-17; Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. ASTM International: West Conshohocken, PA, USA, 2017.
- NMX-C-082-ONNCCE; Building Industry–Masonry–Determination of Shear Bond Strength of Mortar to Masonry Units–Test Method. National Body for Standardization and Certification of Construction and Building, S.C.: Mexico City, Mexico, 2013.
- Hannawi, K.; Bian, H.; Prince-Agbodjan, W.; Raghavan, B. Effect of Different Types of Fibers on the Microstructure and the Mechanical Behavior of Ultra-High Performance Fiber-Reinforced Concretes. Compos. B Eng. 2016, 86, 214–220. [Google Scholar] [CrossRef]
- Song, P.S.; Hwang, S.; Sheu, B.C. Strength Properties of Nylon- and Polypropylene-Fiber-Reinforced Concretes. Cem. Concr. Res. 2005, 35, 1546–1550. [Google Scholar] [CrossRef]
- Liu, J.; Jia, Y.; Wang, J. Calculation of Chloride Ion Diffusion in Glass and Polypropylene Fiber-Reinforced Concrete. Constr. Build. Mater. 2019, 215, 875–885. [Google Scholar] [CrossRef]
- Xu, B.; Toutanji, H.A.; Gilbert, J. Impact Resistance of Poly(Vinyl Alcohol) Fiber Reinforced High-Performance Organic Aggregate Cementitious Material. Cem. Concr. Res. 2010, 40, 347–351. [Google Scholar] [CrossRef]
- Xie, C.; Cao, M.; Khan, M.; Yin, H.; Guan, J. Review on Different Testing Methods and Factors Affecting Fracture Properties of Fiber Reinforced Cementitious Composites. Constr. Build. Mater. 2021, 273, 121766. [Google Scholar] [CrossRef]
- Idrees, M.; Akbar, A.; Mohamed, A.M.; Fathi, D.; Saeed, F. Recycling of Waste Facial Masks as a Construction Material, a Step towards Sustainability. Materials 2022, 15, 1810. [Google Scholar] [CrossRef]
- Wang, L.; He, T.; Zhou, Y.; Tang, S.; Tan, J.; Liu, Z.; Su, J. The Influence of Fiber Type and Length on the Cracking Resistance, Durability and Pore Structure of Face Slab Concrete. Constr. Build. Mater. 2021, 282, 122706. [Google Scholar] [CrossRef]
- Akid, A.S.; Hossain, S.; Munshi, M.I.; Elahi, M.M.; Sobuz, M.H.; Tam, V.W.; Islam, M.S. Assessing the Influence of Fly Ash and Polypropylene Fiber on Fresh, Mechanical and Durability Properties of Concrete. J. King Saud. Univ.-Eng. Sci. 2023, 35, 474–484. [Google Scholar] [CrossRef]
- El-Newihy, A.; Azarsa, P.; Gupta, R.; Biparva, A. Effect of Polypropylene Fibers on Self-Healing and Dynamic Modulus of Elasticity Recovery of Fiber Reinforced Concrete. Fibers 2018, 6, 9. [Google Scholar] [CrossRef]
- Ranjbar, N.; Mehrali, M.; Behnia, A.; Javadi Pordsari, A.; Mehrali, M.; Alengaram, U.J.; Jumaat, M.Z. A Comprehensive Study of the Polypropylene Fiber Reinforced Fly Ash Based Geopolymer. PLoS ONE 2016, 11, e0147546. [Google Scholar] [CrossRef] [PubMed]
- Sadiqul Islam, G.M.; Das Gupta, S. Evaluating Plastic Shrinkage and Permeability of Polypropylene Fiber Reinforced Concrete. Int. J. Sustain. Built Environ. 2016, 5, 345–354. [Google Scholar] [CrossRef]
- Karahan, O.; Atiş, C.D. The Durability Properties of Polypropylene Fiber Reinforced Fly Ash Concrete. Mater. Des. 2011, 32, 1044–1049. [Google Scholar] [CrossRef]
- Zhuang, S.; Wang, Q.; Zhang, M. Water Absorption Behaviour of Concrete: Novel Experimental Findings and Model Characterization. J. Build. Eng. 2022, 53, 104602. [Google Scholar] [CrossRef]
- Cuenca-Moyano, G.M.; Martín-Pascual, J.; Martín-Morales, M.; Valverde-Palacios, I.; Zamorano, M. Effects of Water to Cement Ratio, Recycled Fine Aggregate and Air Entraining/Plasticizer Admixture on Masonry Mortar Properties. Constr. Build. Mater. 2020, 230, 116929. [Google Scholar] [CrossRef]
- He, X.; Yan, B.; Gu, J.; Shen, Q. Combined Impacts of Polypropylene Fibres on Workability, Strength and Permeability of SCC. Mag. Concr. Res. 2014, 66, 127–140. [Google Scholar] [CrossRef]
- Ahmad, W.; Khan, M.; Smarzewski, P. Effect of Short Fiber Reinforcements on Fracture Performance of Cement-Based Materials: A Systematic Review Approach. Materials 2021, 14, 1745. [Google Scholar] [CrossRef]
- Yoo, D.-Y.; Kang, S.-T.; Yoon, Y.-S. Effect of Fiber Length and Placement Method on Flexural Behavior, Tension-Softening Curve, and Fiber Distribution Characteristics of UHPFRC. Constr. Build. Mater. 2014, 64, 67–81. [Google Scholar] [CrossRef]
- Anas, M.; Khan, M.; Bilal, H.; Jadoon, S.; Khan, M.N. Fiber Reinforced Concrete: A Review. Eng. Proc. 2022, 22, 3. [Google Scholar] [CrossRef]
- Shen, D.; Liu, X.; Zeng, X.; Zhao, X.; Jiang, G. Effect of Polypropylene Plastic Fibers Length on Cracking Resistance of High Performance Concrete at Early Age. Constr. Build. Mater. 2020, 244, 117874. [Google Scholar] [CrossRef]
- Han, C.-G.; Hwang, Y.-S.; Yang, S.-H.; Gowripalan, N. Performance of Spalling Resistance of High Performance Concrete with Polypropylene Fiber Contents and Lateral Confinement. Cem. Concr. Res. 2005, 35, 1747–1753. [Google Scholar] [CrossRef]
- Hama, S.M.; Hilal, N.N. Fresh Properties of Self-Compacting Concrete with Plastic Waste as Partial Replacement of Sand. Int. J. Sustain. Built Environ. 2017, 6, 299–308. [Google Scholar] [CrossRef]
- Al-Hadithi, A.I.; Noaman, A.T.; Mosleh, W.K. Mechanical Properties and Impact Behavior of PET Fiber Reinforced Self-Compacting Concrete (SCC). Compos. Struct. 2019, 224, 111021. [Google Scholar] [CrossRef]
Mortar Mix | Facial Mask Type | NA (g) | CEM (g) | Mixing Water (g) | Total Water (g) | Facial Mask (%) | Consistency Index (mm) | W/C |
---|---|---|---|---|---|---|---|---|
Control | 1573 | 353 | 357 | 357 | 0 | 174 | 1.011 | |
M1-0.1 | M1 3 × 3 mm | 1573 | 353 | 357 | 359 | 0.10 | 175 | 1.017 |
M1-0.2 | 1573 | 353 | 357 | 361 | 0.20 | 171 | 1.023 | |
M1-0.5 | 1573 | 353 | 357 | 365 | 0.50 | 178 | 1.034 | |
M1-0.8 | 1573 | 353 | 357 | 369 | 0.80 | 170 | 1.045 | |
M1-1.0 | 1573 | 353 | 357 | 376 | 1.00 | 176 | 1.065 | |
M1-1.5 | 1573 | 353 | 357 | 381 | 1.50 | 179 | 1.079 | |
M2-0.1 | M2 3 × 10 mm | 1573 | 353 | 357 | 358 | 0.10 | 170 | 1.014 |
M2-0.2 | 1573 | 353 | 357 | 363 | 0.20 | 173 | 1.028 | |
M2-0.5 | 1573 | 353 | 357 | 372 | 0.50 | 175 | 1.054 | |
M2-0.8 | 1573 | 353 | 357 | 377 | 0.80 | 176 | 1.068 | |
M2-1.0 | 1573 | 353 | 357 | 384 | 1.00 | 174 | 1.088 | |
M2-1.5 | 1573 | 353 | 357 | 390 | 1.50 | 177 | 1.105 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mora-Ortiz, R.S.; Del Angel-Meraz, E.; Díaz, S.A.; Magaña-Hernández, F.; Torres-Hernández, J.d.R.; Castro, M.A.P. Mechanical Behavior of Masonry Mortars Reinforced with Disposable Face Mask Strips. Materials 2024, 17, 5571. https://doi.org/10.3390/ma17225571
Mora-Ortiz RS, Del Angel-Meraz E, Díaz SA, Magaña-Hernández F, Torres-Hernández JdR, Castro MAP. Mechanical Behavior of Masonry Mortars Reinforced with Disposable Face Mask Strips. Materials. 2024; 17(22):5571. https://doi.org/10.3390/ma17225571
Chicago/Turabian StyleMora-Ortiz, René Sebastián, Ebelia Del Angel-Meraz, Sergio Alberto Díaz, Francisco Magaña-Hernández, Jazmín del Rosario Torres-Hernández, and Mayra Agustina Pantoja Castro. 2024. "Mechanical Behavior of Masonry Mortars Reinforced with Disposable Face Mask Strips" Materials 17, no. 22: 5571. https://doi.org/10.3390/ma17225571
APA StyleMora-Ortiz, R. S., Del Angel-Meraz, E., Díaz, S. A., Magaña-Hernández, F., Torres-Hernández, J. d. R., & Castro, M. A. P. (2024). Mechanical Behavior of Masonry Mortars Reinforced with Disposable Face Mask Strips. Materials, 17(22), 5571. https://doi.org/10.3390/ma17225571