Upscaling of Copper Slag-Based Geopolymer to 3D Printing Technology
Abstract
:1. Introduction
2. Materials, Sample Preparation, and Testing Methods
2.1. Materials
2.2. Printing Method and Setup
2.3. Experimental Methods and Testing Setup
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luhar, S.; Luhar, I. Additive Manufacturing in the Geopolymer Construction Technology: A Review. Open Constr. Build. Technol. J. 2020, 14, 150–161. [Google Scholar] [CrossRef]
- Buswell, R.A.; Soar, R.C.; Gibb, A.G.F.; Thorpe, A. Freeform Construction Application Research. In Advances in Engineering Structures, Mechanics & Construction; Springer: Dordrecht, The Netherlands, 2006; Volume 140, pp. 773–780. [Google Scholar] [CrossRef]
- Kazemian, A.; Yuan, X.; Cochran, E.; Khoshnevis, B. Cementitious Materials for Construction-Scale 3D Printing: Laboratory Testing of Fresh Printing Mixture. Constr. Build. Mater. 2017, 145, 639–647. [Google Scholar] [CrossRef]
- Zhong, H.; Zhang, M. 3D Printing Geopolymers: A Review. Cem. Concr. Compos. 2022, 128, 104455. [Google Scholar] [CrossRef]
- Wangler, T.; Roussel, N.; Bos, F.P.; Salet, T.A.M.; Flatt, R.J. Digital Concrete: A Review. Cem. Concr. Res. 2019, 123, 105780. [Google Scholar] [CrossRef]
- Mohan, M.K.; Rahul, A.V.; De Schutter, G.; Van Tittelboom, K. Extrusion-Based Concrete 3D Printing from a Material Perspective: A State-of-the-Art Review. Cem. Concr. Compos. 2021, 115, 103855. [Google Scholar] [CrossRef]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.Q.; Hui, D. Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges. Compos. B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Gebler, M.; Schoot Uiterkamp, A.J.M.; Visser, C. A Global Sustainability Perspective on 3D Printing Technologies. Energy Policy 2014, 74, 158–167. [Google Scholar] [CrossRef]
- Demirel, I.O.; Yakut, A.; Binici, B. Seismic Performance of Mid-Rise Reinforced Concrete Buildings in Izmir Bayrakli after the 2020 Samos Earthquake. Eng. Fail. Anal. 2022, 137, 106277. [Google Scholar] [CrossRef]
- Elbadawi, M.; Basit, A.; Gaisford, S. Energy Consumption and Carbon Footprint of 3D Printing in Pharmaceutical Manufacture. Int. J. Pharm. 2023, 639, 122926. [Google Scholar] [CrossRef]
- Pasupathy, K.; Ramakrishnan, S.; Sanjayan, J. 3D Concrete Printing of Eco-Friendly Geopolymer Containing Brick Waste. Cem. Concr. Compos. 2023, 138, 104943. [Google Scholar] [CrossRef]
- Iftekar, S.F.; Aabid, A.; Amir, A.; Baig, M. Advancements and Limitations in 3D Printing Materials and Technologies: A Critical Review. Polymers 2023, 15, 2519. [Google Scholar] [CrossRef] [PubMed]
- Tran, M.V.; Vu, T.H.; Nguyen, T.H.Y. Simplified Assessment for One-Part 3D-Printable Geopolymer Concrete Based on Slump and Slump Flow Measurements. Case Stud. Constr. Mater. 2023, 18, e01889. [Google Scholar] [CrossRef]
- Petrovic, V.; Vicente Haro Gonzalez, J.; Jordá Ferrando, O.; Delgado Gordillo, J.; Ramon Blasco Puchades, J.; Portoles Grinan, L. Additive Layered Manufacturing: Sectors of Industrial Application Shown through Case Studies. Int. J. Prod. Res. 2011, 49, 1061–1079. [Google Scholar] [CrossRef]
- Ghaffar, S.H.; Corker, J.; Fan, M. Additive Manufacturing Technology and Its Implementation in Construction as an Eco-Innovative Solution. Autom. Constr. 2018, 93, 1–11. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.; Dong, S.; Yu, X.; Han, B. A Review of the Current Progress and Application of 3D Printed Concrete. Compos. Part. A Appl. Sci. Manuf. 2019, 125, 105533. [Google Scholar] [CrossRef]
- Perkins, I.; Skitmore, M. Three-Dimensional Printing in the Construction Industry: A Review. Int. J. Constr. Manag. 2015, 15, 1–9. [Google Scholar] [CrossRef]
- Khan, M.S.; Sanchez, F.; Zhou, H. 3-D Printing of Concrete: Beyond Horizons. Cem. Concr. Res. 2020, 133, 106070. [Google Scholar] [CrossRef]
- Khoshnevis, B.; Hwang, D.; Yao, K.T.; Yeh, Z. Mega-Scale Fabrication by Contour Crafting. Int. J. Ind. Syst. Eng. 2006, 1, 301–320. [Google Scholar] [CrossRef]
- Aimar, A.; Palermo, A.; Innocenti, B. The Role of 3D Printing in Medical Applications: A State of the Art. J. Health Eng. 2019, 2019, 5340616. [Google Scholar] [CrossRef]
- Zhang, J.; Khoshnevis, B. Optimal Machine Operation Planning for Construction by Contour Crafting. Autom. Constr. 2013, 29, 50–67. [Google Scholar] [CrossRef]
- Lim, S.; Buswell, R.A.; Le, T.T.; Austin, S.A.; Gibb, A.G.F.; Thorpe, T. Developments in Construction-Scale Additive Manufacturing Processes. Autom. Constr. 2012, 21, 262–268. [Google Scholar] [CrossRef]
- Cesaretti, G.; Dini, E.; De Kestelier, X.; Colla, V.; Pambaguian, L. Building Components for an Outpost on the Lunar Soil by Means of a Novel 3D Printing Technology. Acta Astronaut. 2014, 93, 430–450. [Google Scholar] [CrossRef]
- Peng, W.; Pheng, L.S. Managing the Embodied Carbon of Precast Concrete Columns. J. Mater. Civ. Eng. 2011, 23, 1192–1199. [Google Scholar] [CrossRef]
- Buswell, R.A.; Leal De Silva, W.R.; Jones, S.Z.; Dirrenberger, J. 3D Printing Using Concrete Extrusion: A Roadmap for Research. Cem. Concr. Res. 2018, 112, 37–49. [Google Scholar] [CrossRef]
- Raza, M.H.; Zhong, R.Y.; Khan, M. Recent Advances and Productivity Analysis of 3D Printed Geopolymers. Addit. Manuf. 2022, 52, 102685. [Google Scholar] [CrossRef]
- Rezaei Shahmirzadi, M.; Gholampour, A.; Kashani, A.; Ngo, T.D. Geopolymer Mortars for Use in Construction 3D Printing: Effect of LSS, Graphene Oxide and Nanoclay at Different Environmental Conditions. Constr. Build. Mater. 2023, 409, 133967. [Google Scholar] [CrossRef]
- Sameer, H.; Bringezu, S. Life Cycle Input Indicators of Material Resource Use for Enhancing Sustainability Assessment Schemes of Buildings. J. Build. Eng. 2019, 21, 230–242. [Google Scholar] [CrossRef]
- Zhang, C.; Nerella, V.N.; Krishna, A.; Wang, S.; Zhang, Y.; Mechtcherine, V.; Banthia, N. Mix Design Concepts for 3D Printable Concrete: A Review. Cem. Concr. Compos. 2021, 122, 104155. [Google Scholar] [CrossRef]
- Mohan, M.K.; Rahul, A.V.; Van Tittelboom, K.; De Schutter, G. Rheological and Pumping Behaviour of 3D Printable Cementitious Materials with Varying Aggregate Content. Cem. Concr. Res. 2021, 139, 106258. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, F.; Liu, J.C.; Wang, S. Eco-Friendly High Strength, High Ductility Engineered Cementitious Composites (ECC) with Substitution of Fly Ash by Rice Husk Ash. Cem. Concr. Res. 2020, 137, 106200. [Google Scholar] [CrossRef]
- Luukkonen, T.; Abdollahnejad, Z.; Yliniemi, J.; Kinnunen, P.; Illikainen, M. One-Part Alkali-Activated Materials: A Review. Cem. Concr. Res. 2017, 103, 21–34. [Google Scholar] [CrossRef]
- Singh, N.B.; Middendorf, B. Geopolymers as an Alternative to Portland Cement: An Overview. Constr. Build. Mater. 2020, 237, 117455. [Google Scholar] [CrossRef]
- Lahoti, M.; Tan, K.H.; Yang, E.H. A Critical Review of Geopolymer Properties for Structural Fire-Resistance Applications. Constr. Build. Mater. 2019, 221, 514–526. [Google Scholar] [CrossRef]
- Kim, G.; Cho, S.; Im, S.; Suh, H.; Morooka, S.; Shobu, T.; Kanematsu, M.; Machida, A.; Bae, S. Impact of Interatomic Structural Characteristics of Aluminosilicate Hydrate on the Mechanical Properties of Metakaolin-Based Geopolymer. Constr. Build. Mater. 2024, 411, 134529. [Google Scholar] [CrossRef]
- Dave, N.; Sahu, V.; Misra, A.K. Development of Geopolymer Cement Concrete for Highway Infrastructure Applications. J. Eng. Des. Technol. 2020, 18, 1321–1333. [Google Scholar] [CrossRef]
- Kurek, I.; Florek, E.; Gozdur, W.; Ziejewska, C.; Marczyk, J.; Łach, M.; Korniejenko, K.; Duży, P.; Choińska, M.; Szechyńska-Hebda, M.; et al. Foamed Eco-Geopolymer Modified by Perlite and Cellulose as a Construction Material for Energy-Efficient Buildings. Energies 2022, 15, 4297. [Google Scholar] [CrossRef]
- Paz-Gómez, D.C.; Vilarinho, I.S.; Pérez-Moreno, S.M.; Carvalheiras, J.; Guerrero, J.L.; Novais, R.M.; Seabra, M.P.; Ríos, G.; Bolívar, J.P.; Labrincha, J.A. Immobilization of Hazardous Wastes on One-Part Blast Furnace Slag-Based Geopolymers. Sustainability 2021, 13, 13455. [Google Scholar] [CrossRef]
- Uddin, F.; Shaikh, A.; Haque, S.; Sanjayan, J. Behavior of Fly Ash Geopolymer as Fire Resistant Coating for Timber. J. Sustain. Cem.-Based Mater. 2018, 8, 259–274. [Google Scholar] [CrossRef]
- Shamsol, A.S.; Apandi, N.M.; Zailani, W.W.A.; Izwan, K.N.K.; Zakaria, M.; Zulkarnain, N.N. Graphene Oxide as Carbon-Based Materials: A Review of Geopolymer with Addition of Graphene Oxide towards Sustainable Construction Materials. Constr. Build. Mater. 2024, 411, 134410. [Google Scholar] [CrossRef]
- Singh, B.; Ishwarya, G.; Gupta, M.; Bhattacharyya, S.K. Geopolymer Concrete: A Review of Some Recent Developments. Constr. Build. Mater. 2015, 85, 78–90. [Google Scholar] [CrossRef]
- Shee-Ween, O.; Cheng-Yong, H.; Yun-Ming, L.; Mustafa Al Bakri Abdullah, M.; Li-Ngee, H.; Pakawanit, P.; Suhaimi Khalid, M.; Hazim Bin Wan Muhammad, W.; Wan-En, O.; Yong-Jie, H.; et al. Green Development of Fly Ash Geopolymer via Casting and Pressing Approaches: Strength, Morphology, Efflorescence and Ecological Properties. Constr. Build. Mater. 2023, 398, 132446. [Google Scholar] [CrossRef]
- Król, M.; Budowlane, T.B.-M. Ekobetony geopolimerowe. Mater. Bud. 2013, 11, 23–26. [Google Scholar]
- Goode, M.G. Fire Protection of Structural Steel in High-Rise Buildings; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2004. [Google Scholar]
- Wala, D.; Kompozyty, G.R. Adhezja Kompozytów Geopolimerowych Do Betonu, Stali i Ceramiki. Kompozyty 2008, 8, 36–40. [Google Scholar]
- Yong, S.L.; Feng, D.W.; Lukey, G.C.; van Deventer, J.S.J. Chemical Characterisation of the Steel–Geopolymeric Gel Interface. Colloids Surf. A Physicochem. Eng. Asp. 2007, 302, 411–423. [Google Scholar] [CrossRef]
- Łach, M.; Pławecka, K.; Bąk, A.; Adamczyk, M.; Bazan, P.; Kozub, B.; Korniejenko, K.; Lin, W.T. Review of Solutions for the Use of Phase Change Materials in Geopolymers. Materials 2021, 14, 6044. [Google Scholar] [CrossRef]
- Kozub, B.; Castro-Gomes, J. An Investigation of the Ground Walnut Shells’ Addition Effect on the Properties of the Fly Ash-Based Geopolymer. Materials 2022, 15, 3936. [Google Scholar] [CrossRef]
- Davidovits, J.; Buzzi, L.; Rocher, P.; Gimeno, D.; Marini, C.; Tocco, S. Geopolymeric Cement Based on Low Cost Geologic Materials. Results from the European Research Project Geocistem. Available online: https://www.scribd.com/document/458328583/07-GeopolymericCementbasedonLowCostGeologicMaterialsResultsfromtheEuropeanResearchProjectGEOCISTEM (accessed on 26 November 2023).
- Jaji, M.B.; van Zijl, G.P.A.G.; Babafemi, A.J. Slag-Modified Metakaolin-Based Geopolymer for 3D Concrete Printing Application: Evaluating Fresh and Hardened Properties. Clean. Eng. Technol. 2023, 15, 100665. [Google Scholar] [CrossRef]
- Panda, B.; Paul, S.C.; Hui, L.J.; Tay, Y.W.D.; Tan, M.J. Additive Manufacturing of Geopolymer for Sustainable Built Environment. J. Clean. Prod. 2017, 167, 281–288. [Google Scholar] [CrossRef]
- Panda, B.; Unluer, C.; Tan, M.J. Investigation of the Rheology and Strength of Geopolymer Mixtures for Extrusion-Based 3D Printing. Cem. Concr. Compos. 2018, 94, 307–314. [Google Scholar] [CrossRef]
- Bong, S.H.; Xia, M.; Nematollahi, B.; Shi, C. Ambient Temperature Cured ’just-Add-Water’ geopolymer for 3D Concrete Printing Applications. Cem. Concr. Compos. 2021, 121, 104060. [Google Scholar] [CrossRef]
- Voney, V.; Odaglia, P.; Brumaud, C.; Dillenburger, B.; Habert, G. From Casting to 3D Printing Geopolymers: A Proof of Concept. Cem. Concr. Res. 2021, 143, 106374. [Google Scholar] [CrossRef]
- Xia, M.; Sanjayan, J.G. Methods of Enhancing Strength of Geopolymer Produced from Powder-Based 3D Printing Process. Mater. Lett. 2018, 227, 281–283. [Google Scholar] [CrossRef]
- Mukhametkaliyev, T.; Ali, M.H.; Kutugin, V.; Savinova, O.; Vereschagin, V. Influence of Mixing Order on the Synthesis of Geopolymer Concrete. Polymers 2022, 14, 4777. [Google Scholar] [CrossRef] [PubMed]
- Inayath Basha, S.; Ur Rehman, A.; Khalid, H.R.; Aziz, M.A.; Kim, J.H. 3D Printable Geopolymer Composites Reinforced with Carbon-Based Nanomaterials—A Review. Chem. Rec. 2023, 23, e202300054. [Google Scholar] [CrossRef]
- Ricciotti, L.; Apicella, A.; Perrotta, V.; Aversa, R. Geopolymer Materials for Extrusion-Based 3D-Printing: A Review. Polymers 2023, 15, 4688. [Google Scholar] [CrossRef]
- Nematollahi, B.; Xia, M.; Sanjayan, J.; Vijay, P. Effect of Type of Fiber on Inter-Layer Bond and Flexural Strengths of Extrusion-Based 3D Printed Geopolymer. Mater. Sci. Forum 2018, 939, 155–162. [Google Scholar] [CrossRef]
- Munir, Q.; Kärki, T. Cost Analysis of Various Factors for Geopolymer 3D Printing of Construction Products in Factories and on Construction Sites. Recycling 2021, 6, 60. [Google Scholar] [CrossRef]
- Lim, J.H.; Panda, B.; Pham, Q.C. Improving Flexural Characteristics of 3D Printed Geopolymer Composites with In-Process Steel Cable Reinforcement. Constr. Build. Mater. 2018, 178, 32–41. [Google Scholar] [CrossRef]
- Archez, J.; Texier-Mandoki, N.; Bourbon, X.; Caron, J.F.; Rossignol, S. Shaping of Geopolymer Composites by 3D Printing. J. Build. Eng. 2021, 34. [Google Scholar] [CrossRef]
- Panda, B.; Tan, M.J. Experimental Study on Mix Proportion and Fresh Properties of Fly Ash Based Geopolymer for 3D Concrete Printing. Ceram. Int. 2018, 44, 10258–10265. [Google Scholar] [CrossRef]
- Marczyk, J.; Ziejewska, C.; Gadek, S.; Korniejenko, K.; Łach, M.; Góra, M.; Kurek, I.; Dogan-Saglamtimur, N.; Hebda, M.; Szechynska-Hebda, M. Hybrid Materials Based on Fly Ash, Metakaolin, and Cement for 3D Printing. Materials 2021, 14, 6874. [Google Scholar] [CrossRef] [PubMed]
- Other Products. Available online: https://www.aurubis.com/beerse/products/other (accessed on 29 October 2024).
- Hager, I.; Maroszek, M.; Mróz, K.; Kęsek, R.; Hebda, M.; Dvorkin, L.; Marchuk, V. Interlayer Bond Strength Testing in 3D-Printed Mineral Materials for Construction Applications. Materials 2022, 15, 4112. [Google Scholar] [CrossRef] [PubMed]
- Ferretti, E.; Moretti, M.; Chiusoli, A.; Naldoni, L.; De Fabritiis, F.; Visonà, M. Mechanical Properties of a 3D-Printed Wall Segment Made with an Earthen Mixture. Materials 2022, 15, 438. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.; Salman, N.M.; Wang, L.; Wang, F. A Novel Additive Mortar Leveraging Internal Curing for Enhancing Interlayer Bonding of Cementitious Composite for 3D Printing. Constr. Build. Mater. 2020, 244. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; She, W.; Yang, L.; Liu, G.; Yang, Y. Rheological and Harden Properties of the High-Thixotropy 3D Printing Concrete. Constr. Build. Mater. 2019, 201, 278–285. [Google Scholar] [CrossRef]
- Nerella, V.N.; Hempel, S.; Mechtcherine, V. Effects of Layer-Interface Properties on Mechanical Performance of Concrete Elements Produced by Extrusion-Based 3D-Printing. Constr. Build. Mater. 2019, 205, 586–601. [Google Scholar] [CrossRef]
- Bong, S.H.; Nematollahi, B.; Nazari, A.; Xia, M.; Sanjayan, J. Method of Optimisation for Ambient Temperature Cured Sustainable Geopolymers for 3D Printing Construction Applications. Materials 2019, 12, 902. [Google Scholar] [CrossRef]
Oxide | Result [%] | 3-Sigma | Line | Int. (cps/uA) |
---|---|---|---|---|
Fe2O3 | 51.80 | 0.041 | FeKa | 5019.7052 |
SiO2 | 27.29 | 0.090 | SiKa | 42.4861 |
Al2O3 | 7.37 | 0.061 | AlKa | 5.4374 |
ZnO | 4.49 | 0.012 | ZnKa | 422.9169 |
CaO | 3.12 | 0.012 | CaKa | 28.2141 |
Cr2O3 | 1.42 | 0.007 | CrKa | 127.3691 |
MnO | 0.79 | 0.004 | MnKa | 75.1951 |
CuO | 0.73 | 0.005 | CuKa | 58.9705 |
TiO2 | 0.63 | 0.006 | TiKa | 26.2906 |
SO3 | 0.61 | 0.059 | SKa | 0.1032 |
P2O5 | 0.55 | 0.013 | PKa | 1.4194 |
MgO | 0.52 | 0.060 | MgKa | 0.1024 |
K2O | 0.24 | 0.005 | KKa | 0.6046 |
LOI | 0.50 | - | - | - |
Parameter | Value | Standard Deviation |
---|---|---|
Mean size [μm] | 5.34 | 0.019 |
D10 [μm] | 0.26 | 0.002 |
D50 [μm] | 4.33 | 0.013 |
D90 [μm] | 10.44 | 0.040 |
Span | 2.35 | 0.008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozub, B.; Sitarz, M.; Gądek, S.; Ziejewska, C.; Mróz, K.; Hager, I. Upscaling of Copper Slag-Based Geopolymer to 3D Printing Technology. Materials 2024, 17, 5581. https://doi.org/10.3390/ma17225581
Kozub B, Sitarz M, Gądek S, Ziejewska C, Mróz K, Hager I. Upscaling of Copper Slag-Based Geopolymer to 3D Printing Technology. Materials. 2024; 17(22):5581. https://doi.org/10.3390/ma17225581
Chicago/Turabian StyleKozub, Barbara, Mateusz Sitarz, Szymon Gądek, Celina Ziejewska, Katarzyna Mróz, and Izabela Hager. 2024. "Upscaling of Copper Slag-Based Geopolymer to 3D Printing Technology" Materials 17, no. 22: 5581. https://doi.org/10.3390/ma17225581
APA StyleKozub, B., Sitarz, M., Gądek, S., Ziejewska, C., Mróz, K., & Hager, I. (2024). Upscaling of Copper Slag-Based Geopolymer to 3D Printing Technology. Materials, 17(22), 5581. https://doi.org/10.3390/ma17225581