Restructuring the Basic Design of Several Accelerator-Based Concrete Mixes by Integrating Superplasticizers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Characterization
3. Results and Discussion
3.1. X-Ray Diffraction
3.2. Scanning Electron Microscopy with Energy Dispersive X-Ray Spectroscopy (SEM-EDX)
3.3. Water Absorption and Apparent Density
3.4. Compressive Strength
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Global Construction Market Report 2023–2028: Increasing Demand for Luxury Homes Bolsters Growth. Available online: https://www.globenewswire.com/news-release/2023/05/22/2673071/28124/en/Global-Construction-Market-Report-2023-2028-Increasing-Demand-for-Luxury-Homes-Bolsters-Growth.html (accessed on 30 August 2023).
- Global Construction Market Report and Forecast 2023–2028. Available online: https://www.expertmarketresearch.com/reports/construction-market (accessed on 30 August 2023).
- Oruc, S.; Dikbas, H.A.; Gumus, B.; Yucel, I. The Impact of Climate Change on Construction Activity Performance. Buildings 2024, 14, 372. [Google Scholar] [CrossRef]
- Climate Change: Global Temperature. Available online: http://www.climate.gov/news-features/understanding-climate/climate-change-global-temperature (accessed on 2 September 2023).
- Gagg, C.R. Cement and Concrete as an Engineering Material: An Historic Appraisal and Case Study Analysis. Eng. Fail. Anal. 2014, 40, 114–140. [Google Scholar] [CrossRef]
- Tu, H.; Wei, Z.; Bahrami, A.; Kahla, N.B.; Ahmad, A.; Özkılıç, Y.O. Recent Advancements and Future Trends in 3D Concrete Printing Using Waste Materials. Dev. Built Environ. 2023, 16, 100187. [Google Scholar] [CrossRef]
- Lindh, P.; Lemenkova, P. Hardening Accelerators (X-Seed 100 BASF, PCC, LKD and SALT) as Strength-Enhancing Admixture Solutions for Soil Stabilization. Slovak J. Civ. Eng. 2023, 31, 10–21. [Google Scholar] [CrossRef]
- Wang, Y.; Lei, L.; Liu, J.; Ma, Y.; Liu, Y.; Xiao, Z.; Shi, C. Accelerators for Normal Concrete: A Critical Review on Hydration, Microstructure and Properties of Cement-Based Materials. Cem. Concr. Compos. 2022, 134, 104762. [Google Scholar] [CrossRef]
- Zeng, L.; Zhao, S.; Wang, W.; Qiao, M.; Hong, J.; Ran, Q.; Wang, Y. Accelerated Early Age Hydration of Cement Pastes Blended with Sulphoaluminate Expansive Agent. J. Adv. Concr. Technol. 2021, 19, 655–667. [Google Scholar] [CrossRef]
- Salvador, R.P.; Cavalaro, S.H.P.; Segura, I.; Figueiredo, A.D.; Pérez, J. Early Age Hydration of Cement Pastes with Alkaline and Alkali-Free Accelerators for Sprayed Concrete. Constr. Build. Mater. 2016, 111, 386–398. [Google Scholar] [CrossRef]
- Dorn, T.; Hirsch, T.; Stephan, D. Working Mechanism of Calcium Nitrate as an Accelerator for Portland Cement Hydration. J. Am. Ceram. Soc. 2022, 106, 752–766. [Google Scholar] [CrossRef]
- Rehman, A.U.; Kim, J.-H. 3D Concrete Printing: A Systematic Review of Rheology, Mix Designs, Mechanical, Microstructural, and Durability Characteristics. Materials 2021, 14, 3800. [Google Scholar] [CrossRef]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.; Hui, D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. Part B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Pan, W.; Ding, Z.; Chen, Y. Effects of TEA·HCl Hardening Accelerator on the Workability of Cement-Based Materials. IOP Conf. Ser. Mater. Sci. Eng. 2017, 182, 012046. [Google Scholar] [CrossRef]
- Dorn, T.; Blask, O.; Stephan, D. Acceleration of Cement Hydration—A Review of the Working Mechanisms, Effects on Setting Time, and Compressive Strength Development of Accelerating Admixtures. Constr. Build. Mater. 2022, 323, 126554. [Google Scholar] [CrossRef]
- Khan, J.; G, S.K. Influence of Binary Antifreeze Admixtures on Strength Performance of Concrete under Cold Weather Conditions. J. Build. Eng. 2021, 34, 102055. [Google Scholar] [CrossRef]
- Shah, S.N.R.; Aslam, M.; Shah, S.A.; Oad, R. Behaviour of Normal Concrete using Superplasticizer under Different Curing Regimes. Pak. J. Eng. Appl. Sci. 2014, 15, 87–94. [Google Scholar]
- Kujawa, W.; Olewnik-Kruszkowska, E.; Nowaczyk, J. Concrete Strengthening by Introducing Polymer-Based Additives into the Cement Matrix—A Mini Review. Materials 2021, 14, 6071. [Google Scholar] [CrossRef]
- Coppola, L.; Erali, E.; Troli, R.; Collepardi, M. Blending of Acrylic Superplasticizer with Napthalene, Melmine or Lignosulfonate-Based Polymers, International ConferenceAmerican Concrete Institute. 1997. Available online: https://trid.trb.org/View/475540 (accessed on 3 April 2024).
- Flatt, R.J.; Roussel, N.; Cheeseman, C.R. Concrete: An Eco Material That Needs to Be Improved. J. Eur. Ceram. Soc. 2012, 32, 2787–2798. [Google Scholar] [CrossRef]
- “DYNAMON SR41,” Romania. Available online: https://www.mapei.com/ro/ro/ultralite/dynamon-sr4 (accessed on 3 April 2024).
- Scurtu, D.A.; David, L.; Levei, E.A.; Simedru, D.; Filip, X.; Roman, C.; Cadar, O. Developing Innovative Cement Composites Containing Vine Shoot Waste and Superplasticizers. Materials 2023, 16, 5313. [Google Scholar] [CrossRef]
- Simedru, A.F.; Becze, A.; Cadar, O.; Scurtu, D.A.; Simedru, D.; Ardelean, I. Structural Characterization of Several Cement-Based Materials Containing Chemical Additives with Potential Application in Additive Manufacturing. Int. J. Mol. Sci. 2023, 24, 7688. [Google Scholar] [CrossRef]
- Tunc, E.T. Strength and durability of superplasticizer concrete based on different component parameters: An experimental and statistical study. Arab. J. Sci. Eng. 2024. [Google Scholar] [CrossRef]
- SEN 197; Standard Cement-Part 1: Composition, Specification, and Conformity Criteria Common Cements. ASRO: Bucharest, Romania, 2011.
- SR EN 12620+A1:2008; Agregate Pentru Beton. ASRO: Bucharest, Romania, 2008.
- SR EN 1008:2003; Apa de Preparare Pentru Beton. Specificaţii Pentru Prelevare, Incercare şi Evaluare a Aptitudinii de Utilizare a Apei, Inclusiv a Apelor Recuperate din Procese ale Industriei de Beton, ca Apă de Preparare Pentru Beton. ASRO: Bucharest, Romania, 2003.
- SR EN 934-2:2003; Admixtures for Concrete, Mortar and Grout. Part 2: Concrete Admixtures—Definitions, Requirements, Conformity, Marking and Labelling. ASRO: Bucharest, Romania, 2003.
- ASTM C 642-82; Standard Test Method for Density, Absorption and Voids in Hardened Concrete. Annual Book of ASTM Standards. American Society for Testing and Materials: Philadelphia, PA, USA, 1995.
- Golewski, G.L. Assessing of Water Absorption on Concrete Composites Containing Fly Ash up to 30% in Regards to Structures Completely Immersed in Water. Case Stud. Constr. Mater. 2023, 19, e02337. [Google Scholar] [CrossRef]
- Nicula, L.M.; Corbu, O.; Iliescu, M. Influence of Blast Furnace Slag on the Durability Characteristic of Road Concrete Such as Freeze-Thaw Resistance. Procedia Manuf. 2020, 46, 194–201. [Google Scholar] [CrossRef]
- SR EN 12390-7:2019; Încercări pe Beton Întărit. Partea 7: Densitatea Betonului Întărit. ASRO: Bucharest, Romania, 2019.
- Pereira, P.; Evangelista, L.; De Brito, J. The Effect of Superplasticizers on the Mechanical Performance of Concrete Made with Fine Recycled Concrete Aggregates. Cem. Concr. Compos. 2012, 34, 1044–1052. [Google Scholar] [CrossRef]
- Alsadey, S.; Omran, A. Effect of Superplasticizers to Enhance the Properties of Concrete. Des. Constr. Maint. 2022, 2, 84–91. [Google Scholar] [CrossRef]
- Hsiao, Y.-H.; La Plante, E.C.; Krishnan, N.M.A.; Pape, Y.L.; Neithalath, N.; Bauchy, M.; Sant, G. Effects of Irradiation on Albite’s Chemical Durability. J. Phys. Chem. A 2017, 121, 7835–7845. [Google Scholar] [CrossRef]
- Petrounias, P.; Giannakopoulou, P.; Rogkala, A.; Stamatis, P.; Lampropoulou, P.; Tsikouras, B.; Hatzipanagiotou, K. The Effect of Petrographic Characteristics and Physico-Mechanical Properties of Aggregates on the Quality of Concrete. Minerals 2018, 8, 577. [Google Scholar] [CrossRef]
- Ideker, J.H.; Scrivener, K.L.; Fryda, H.; Touzo, B. Calcium Aluminate Cements; Elsevier: Amsterdam, The Netherlands, 2019; pp. 537–584. [Google Scholar]
- SciELO—Brazil—XRD Investigation of Cement Pastes Incorporating Concrete Floor Polishing Waste XRD Investigation of Cement Pastes Incorporating Concrete Floor Polishing Waste. Available online: https://www.scielo.br/j/ce/a/ChdzshMRqcJdyHm53kgPmLS/?lang=en (accessed on 7 April 2024).
- Pospisil, K.; Frybort, A.; Kratochvil, A.; Machackova, J. Scanning Electron Microscopy Method as a Tool for the Evaluation of Selected Materials Microstructure. Trans. Transp. Sci. 2008, 1, 13–20. [Google Scholar] [CrossRef]
- Von Werder, J.; Simon, S.; Gardei, A.; Fontana, P.; Meng, B. Thermal and Hydrothermal Treatment of UHPC: Influence of the Process Parameters on the Phase Composition of Ultra-High Performance Concrete. Mater. Struct. 2021, 54, 44. [Google Scholar] [CrossRef]
- Goñi, S.; Puertas, F.; Hernández, M.S.; Palacios, M.; Guerrero, A.; Dolado, J.S.; Zanga, B.; Baroni, F. Quantitative Study of Hydration of C3S and C2S by Thermal Analysis. J. Therm. Anal. Calorim. 2010, 102, 965–973. [Google Scholar] [CrossRef]
- Yuan, Q.; Liu, Z.; Zheng, K.; Ma, C. Inorganic Cementing Materials; Elsevier: Amsterdam, The Netherlands, 2021; pp. 17–57. [Google Scholar]
- Imtiaz, T.; Ahmed, A.; Hossain, S.; Faysal, M. Microstructure Analysis and Strength Characterization of Recycled Base and Sub-Base Materials Using Scanning Electron Microscope. Infrastructures 2020, 5, 70. [Google Scholar] [CrossRef]
- Cuesta, A.; Santacruz, I.; De La Torre, A.G.; Dapiaggi, M.; Zea-Garcia, J.D.; Aranda, M.A.G. Local Structure and Ca/Si Ratio in C-S-H Gels from Hydration of Blends of Tricalcium Silicate and Silica Fume. Cem. Concr. Res. 2021, 143, 106405. [Google Scholar] [CrossRef]
- Richardson, I.G. The Nature of C-S-H in Hardened Cements. Cem. Concr. Res. 1999, 29, 1131–1147. [Google Scholar] [CrossRef]
- Imtiaz, L.; Rehman, S.K.U.; Ali Memon, S.; Khizar Khan, M.; Faisal Javed, M. A Review of Recent Developments and Advances in Eco-Friendly Geopolymer Concrete. Appl. Sci. 2020, 10, 7838. [Google Scholar] [CrossRef]
- Azmi, N.B.; Khalid, F.S.; Irwan, J.M.; Mazenan, P.N.; Zahir, Z.; Shahidan, S. Performance of Composite Sand Cement Brick Containing Recycle Concrete Aggregate and Waste Polyethylene Terephthalate with Different Mix Design Ratio. IOP Conf. Ser. Earth Environ. Sci. 2018, 140, 012129. [Google Scholar] [CrossRef]
- Dvorkin, L.; Zhitkovsky, V.; Makarenko, R.; Ribakov, Y. The Influence of Polymer Superplasticizers on Properties of High-Strength Concrete Based on Low-Clinker Slag Portland Cement. Materials 2023, 16, 2075. [Google Scholar] [CrossRef]
Sample | Portland Cement CEM I–52.5R (g) | Natural Sand (0–0.4 mm) (g) | Coarse Aggregate (8–16 mm) (g) | Superplasticizer Dynamon SR41 (mL) | Accelerator | ||
---|---|---|---|---|---|---|---|
Ca(NO3)2·4H2O (g) | Na2S2O3·5H2O (g) | Al2(SO4)3·18H2O (g) | |||||
Series I | |||||||
C | 300 | 537.871 | 680.067 | - | - | - | - |
CNa | 250 | 448.226 | 566.722 | - | - | 11.772 | - |
CCa | 250 | 448.226 | 566.722 | - | 10.793 | - | - |
CCaNa | 250 | 448.226 | 566.722 | - | 5.396 | 5.886 | - |
C2CaNa | 250 | 448.226 | 566.722 | - | 7.195 | 3.924 | - |
CCaNaAl | 250 | 448.226 | 566.722 | - | 4.869 | 3.597 | 3.924 |
Series II | |||||||
SC | 300 | 537.871 | 680.067 | 3.0 | - | - | - |
SCNa | 250 | 448.226 | 566.722 | 2.5 | - | 11.772 | - |
SCCa | 250 | 448.226 | 566.722 | 2.5 | 10.793 | - | - |
SCCaNa | 250 | 448.226 | 566.722 | 2.5 | 5.396 | 5.886 | - |
SC2CaNa | 250 | 448.226 | 566.722 | 2.5 | 7.195 | 3.924 | - |
SCCaNaAl | 250 | 448.226 | 566.722 | 2.5 | 4.869 | 3.597 | 3.924 |
Sample | Element (%) | Ratio | ||||||
---|---|---|---|---|---|---|---|---|
O | Si | Ca | Na | Al | S | Ca/Si | Ca/(Si + Al) | |
C | 55.55 | 5.83 | 37.40 | - | 1.22 | - | 6.42 | 5.30 |
SC | 56.35 | 28.74 | 12.79 | 0.42 | 1.17 | 0.53 | 0.45 | 0.43 |
CNa | 53.10 | 6.54 | 35.45 | 1.37 | 1.77 | 1.77 | 5.42 | 4.27 |
SCNa | 39.93 | 8.26 | 40.86 | 0.84 | 1.49 | 1.94 | 4.95 | 4.19 |
CCa | 54.61 | 5.43 | 38.35 | - | 1.61 | - | 7.06 | 5.45 |
SCCa | 54.86 | 5.49 | 38.00 | - | 1.66 | - | 6.92 | 5.31 |
CCaNa | 50.81 | 5.26 | 41.34 | 1.18 | 1.41 | - | 7.86 | 6.20 |
SCCaNa | 52.84 | 19.94 | 23.09 | 0.97 | 1.84 | 1.31 | 1.16 | 1.06 |
C2CaNa | 52.51 | 6.28 | 38.49 | 0.81 | 1.91 | - | 6.13 | 4.70 |
SC2CaNa | 49.80 | 15.33 | 29.27 | 0.72 | 3.54 | 1.34 | 1.91 | 1.55 |
CCaNaAl | 53.89 | 7.75 | 34.30 | 1.49 | 2.56 | - | 4.43 | 3.33 |
SCCaNaAl | 50.08 | 14.35 | 28.93 | 1.02 | 2.78 | 2.84 | 2.02 | 1.69 |
C | CNa | CCa | CCaNa | C2CaNa | CCaNaAl | |
---|---|---|---|---|---|---|
ρa (g/cm3) | 2.07 | 2.06 | 2.05 | 2.07 | 2.05 | 2.07 |
Wi (%) | 4.18 | 4.00 | 4.25 | 4.55 | 4.55 | 4.73 |
SC | SCNa | SCCa | SCCaNa | SC2CaNa | SCCaNaAl | |
ρa (g/cm3) | 2.24 | 2.23 | 2.22 | 2.24 | 2.25 | 2.20 |
Wi (%) | 2.64 | 2.53 | 2.73 | 2.72 | 3.31 | 3.50 |
C | CNa | CCa | CCaNa | C2CaNa | CCaNaAl | |
---|---|---|---|---|---|---|
ρ (N/mm2) | 18.73 (1.30) | 19.34 (1.33) | 18.75 (1.31) | 17.60 (1.23) | 17.01 (1.18) | 14.47 (1.03) |
SC | SCNa | SCCa | SCCaNa | SC2CaNa | SCCaNaAl | |
ρ (N/mm2) | 20.93 (1.45) | 21.35 (1.48) | 19.48 (1.36) | 19.33 (1.27) | 17.66 (1.20) | 15.67 (1.11) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simedru, A.F.; Cadar, O.; Becze, A.; Simedru, D. Restructuring the Basic Design of Several Accelerator-Based Concrete Mixes by Integrating Superplasticizers. Materials 2024, 17, 5582. https://doi.org/10.3390/ma17225582
Simedru AF, Cadar O, Becze A, Simedru D. Restructuring the Basic Design of Several Accelerator-Based Concrete Mixes by Integrating Superplasticizers. Materials. 2024; 17(22):5582. https://doi.org/10.3390/ma17225582
Chicago/Turabian StyleSimedru, Alexandru Florin, Oana Cadar, Anca Becze, and Dorina Simedru. 2024. "Restructuring the Basic Design of Several Accelerator-Based Concrete Mixes by Integrating Superplasticizers" Materials 17, no. 22: 5582. https://doi.org/10.3390/ma17225582
APA StyleSimedru, A. F., Cadar, O., Becze, A., & Simedru, D. (2024). Restructuring the Basic Design of Several Accelerator-Based Concrete Mixes by Integrating Superplasticizers. Materials, 17(22), 5582. https://doi.org/10.3390/ma17225582