Deposition of Diamond Coatings on Ultrathin Microdrills for PCB Board Drilling
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Etching Process of the Cemented Carbide Substrates
2.3. Nanodiamond Seed Preparation and Seeding
2.4. Preparation of the Diamond Coatings on Microdrills
2.5. Performance of the Diamond Coatings on Microdrills
3. Results
3.1. Fracture Strength of Pretreated Microdrills
3.2. Deposition of Micro, Nano, and Composite Intermediate Layer Coatings
3.3. Performance of the Micro, Nano, and Composite Diamond Coatings for Drilling PCBs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shi, H.; Zhu, T.; Chen, Z. Back-drilling of high-speed printed circuit boards: A review. Int. J. Adv. Manuf. Technol. 2022, 121, 1483–1499. [Google Scholar] [CrossRef]
- Mirvakili, S.M.; Broderick, K.; Langer, R.S. A New Approach for Microfabrication of Printed Circuit Boards with Ultrafine Traces. ACS Appl. Mater. Interfaces 2019, 11, 35376–35381. [Google Scholar] [CrossRef]
- Shi, H.; Li, H. Challenges and developments of micro drill bit for printed circuit board: A review. Circuit World 2013, 39, 75–81. [Google Scholar] [CrossRef]
- Ren, B.; Su, Y.; Lou, J.; Zhang, C.; Tang, P.; Lin, S.; Dai, M.; Zhou, K. PECVD technology deposition of high hardness a-C:H films on micro-drill surfaces: Substrate bias voltage effects. J. Manuf. Process. 2024, 124, 385–398. [Google Scholar] [CrossRef]
- Shi, H.; Liu, X.; Lou, Y. Materials and micro drilling of high frequency and high speed printed circuit board: A review. Int. J. Adv. Manuf. Technol. 2019, 100, 827–841. [Google Scholar] [CrossRef]
- Huang, G.; Wan, Z.; Yang, S.; Li, Q.; Zhong, G.; Wang, B.; Liu, Z. Mechanism investigation of micro-drill fracture in PCB large aspect ratio micro-hole drilling. J. Mater. Process. Technol. 2023, 316, 117962. [Google Scholar] [CrossRef]
- Primeaux, P.A.; Zhang, B.; Meng, W.J. Performance of micro-drilling of hard Ni alloys using coated and uncoated WC/Co bits. Eng. Res. Express 2019, 1, 025046. [Google Scholar] [CrossRef]
- Huang, X.; Jiang, F.; Wang, Z.; Wu, X.; Huang, S.; Liu, Y.; Zhang, J.; Shi, X. review on the balancing design of micro drills. Int. J. Adv. Manuf. Technol. 2023, 126, 4849–4871. [Google Scholar] [CrossRef]
- Mallika, K.; Komanduri, R. Diamond coatings on cemented tungsten carbide tools by low-pressure microwave CVD. Wear 1999, 224, 245–266. [Google Scholar] [CrossRef]
- Dumpala, R.; Chandran, M.; Ramachandra Rao, M.S. Engineered CVD Diamond Coatings for Machining and Tribological Applications. JOM 2015, 67, 1565–1577. [Google Scholar] [CrossRef]
- Shibuki, K.; Yagi, M.; Saijo, K.; Takatsu, S. Adhesion strength of diamond films on cemented carbide substrates. Surf. Coat. Technol. 1988, 36, 295–302. [Google Scholar] [CrossRef]
- Fan, W.D.; Chen, X.; Jagannadham, K.; Narayan, J. Diamond-ceramic composite tool coatings. J. Mater. Res. 1994, 9, 2850–2867. [Google Scholar] [CrossRef]
- Peters, M.G.; Cummings, R.H. Methods for Coating Adherent Diamond Films on Cemented Tungsten Carbide Substrates. EP0519587A1, 23 December 1992. [Google Scholar]
- Fan, S.; Kuang, T.; Xu, W.; Zhang, Y.; Su, Y.; Lin, S.; Wang, D.; Yang, H.; Zhou, K.; Dai, M.; et al. Effect of pretreatment strategy on the microstructure, mechanical properties and cutting performance of diamond coated hardmetal tools using HFCVD method. Int. J. Refract. Met. Hard Mater. 2021, 101, 105687. [Google Scholar] [CrossRef]
- Geng, C.L.; Tang, W.Z.; Hei, L.F.; Liu, S.T.; Lu, F.X. Fracture strength of two-step pretreated and diamond coated cemented carbide microdrills. Int. J. Refract. Met. Hard Mater. 2007, 25, 159–165. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Su, Y.; Fan, S.; Dai, M.; Lin, S.; Kuang, T.; Shi, Q. Optimization and evaluation of a three-step pretreatment process for PCB microdrills. Int. J. Refract. Met. Hard Mater. 2023, 113, 106190. [Google Scholar] [CrossRef]
- Handschuh-Wang, S.; Wang, T.; Tang, Y. Ultrathin Diamond Nanofilms—Development, Challenges, and Applications. Small 2021, 17, 2007529. [Google Scholar] [CrossRef]
- Wang, T.; Huang, L.; Handschuh-Wang, S.; Zhang, S.; Li, X.; Chen, B.; Yang, Y.; Zhou, X.; Tang, Y. Adherent and low friction nanocrystalline diamond films via adsorbing organic molecules in self-assembly seeding process. Appl. Surf. Sci. 2018, 456, 75–82. [Google Scholar] [CrossRef]
- Göltz, M.; Helmreich, T.; Börner, R.; Kupfer, T.; Schubert, A.; Rosiwal, S. Spatial distribution of thermally induced residual stresses in HF-CVD diamond coatings on microstructured steel surfaces. Diam. Relat. Mater. 2023, 136, 109931. [Google Scholar] [CrossRef]
- Chandran, M.; Hoffman, A. Diamond film deposition on WC–Co and steel substrates with a CrN interlayer for tribological applications. J. Phys. D Appl. Phys. 2016, 49, 213002. [Google Scholar] [CrossRef]
- Gunnars, J.; Alahelisten, A. Thermal stresses in diamond coatings and their influence on coating wear and failure. Surf. Coat. Technol. 1996, 80, 303–312. [Google Scholar] [CrossRef]
- Millán-Barba, J.; Taylor, A.; Bakkali, H.; Alcantara, R.; Lloret, F.; de Villoria, R.G.; Dominguez, M.; Mortet, V.; Gutiérrez, M.; Araújo, D. Low temperature growth of nanocrystalline diamond: Insight thermal property. Diam. Relat. Mater. 2023, 137, 110070. [Google Scholar] [CrossRef]
- Chandran, M. Chapter 14—Diamond deposition on WC–Co substrates with interlayers for engineering applications. In NANOMATERIALS for Sensing and Optoelectronic Applications; Jayaraj, M.K., Subha, P.P., Thomas, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 311–330. [Google Scholar]
- Köpf, A.; Haubner, R.; Lux, B. Double-layer coatings on WC–Co hardmetals containing diamond and titanium carbide/nitride. Diam. Relat. Mater. 2000, 9, 494–501. [Google Scholar] [CrossRef]
- Cui, Y.X.; Shen, B.; Sun, F.H. Diamond deposition on WC–Co substrate with amorphous SiC interlayer. Surf. Eng. 2014, 30, 237–243. [Google Scholar] [CrossRef]
- Wang, G.; Lu, X.; Ding, M.; Liu, Y.; Tang, W.; Zhang, B. Diamond coatings deposited on cemented carbide substrates with SiC as interlayers: Preparation and erosion resistance tests. Diam. Relat. Mater. 2017, 73, 105–113. [Google Scholar] [CrossRef]
- Ye, F.; Li, Y.; Sun, X.; Yang, Q.; Kim, C.-Y.; Odeshi, A.G. CVD diamond coating on WC-Co substrate with Al-based interlayer. Surf. Coat. Technol. 2016, 308, 121–127. [Google Scholar] [CrossRef]
- Xu, Z.; Lev, L.; Lukitsch, M.; Kumar, A. Deposition of Adherent Diamond Coating on WC-Co Substrate. MRS Online Proc. Libr. 2006, 890, 102. [Google Scholar] [CrossRef]
- Ye, F.; Mohammadtaheri, M.; Li, Y.; Shiri, S.; Yang, Q.; Chen, N. Diamond nucleation and growth on WC-Co inserts with Cr2O3-Cr interlayer. Surf. Coat. Technol. 2018, 340, 190–198. [Google Scholar] [CrossRef]
- Ma, D.; Hei, H.; Zheng, K.; Zhou, B.; Gao, J.; Ma, Y.; Wu, Y.; Wang, Y.; Yu, S.; Xue, Y.; et al. Effects of TiMoTa nano-crystalline interlayer on nucleation, adhesion and tribological behaviors of diamond coating. Ceram. Int. 2023, 49, 9512–9522. [Google Scholar] [CrossRef]
- Tang, W.; Wang, S.; Lu, F. Preparation and performance of diamond coatings on cemented carbide inserts with cobalt boride interlayers. Diam. Relat. Mater. 2000, 9, 1744–1748. [Google Scholar] [CrossRef]
- Ren, Y.; Yu, X.; Liu, F.; Wang, Y.-H. Low-temperature β-SiC interlayer for diamond film on cemented carbide. Surf. Eng. 2019, 35, 483–490. [Google Scholar] [CrossRef]
- Wang, T.; Zhuang, H.; Jiang, X. One step deposition of highly adhesive diamond films on cemented carbide substrates via diamond/β-SiC composite interlayers. Appl. Surf. Sci. 2015, 359, 790–796. [Google Scholar] [CrossRef]
- Wang, T.; Jiang, X.; Biermanns, A.; Bornemann, R.; Bolívar, P.H. Deposition of diamond/β-SiC composite gradient films by HFCVD: A competitive growth process. Diam. Relat. Mater. 2014, 42, 41–48. [Google Scholar] [CrossRef]
- Wang, X.; Handschuh-Wang, S.; Xu, Y.; Xiang, L.; Zhou, Z.; Wang, T.; Tang, Y. Hierarchical Micro/Nanostructured Diamond Gradient Surface for Controlled Water Transport and Fog Collection. Adv. Mater. Interfaces 2021, 8, 2100196. [Google Scholar] [CrossRef]
- Wang, T.; Handschuh-Wang, S.; Yang, Y.; Zhuang, H.; Schlemper, C.; Wesner, D.; Schönherr, H.; Zhang, W.; Jiang, X. Controlled Surface Chemistry of Diamond/β-SiC Composite Films for Preferential Protein Adsorption. Langmuir 2014, 30, 1089–1099. [Google Scholar] [CrossRef] [PubMed]
- Lei, X.; Shen, B.; Chen, S.; Wang, L.; Sun, F. Tribological behavior between micro- and nano-crystalline diamond films under dry sliding and water lubrication. Tribol. Int. 2014, 69, 118–127. [Google Scholar] [CrossRef]
- Fraga, M.A.; Contin, A.; Rodríguez, L.A.A.; Vieira, J.; Campos, R.A.; Corat, E.J.; Airoldi, V.J.T. Nano- and microcrystalline diamond deposition on pretreated WC–Co substrates: Structural properties and adhesion. Mater. Res. Express 2016, 3, 025601. [Google Scholar] [CrossRef]
- Singla, A.; Singh, N.K.; Singh, Y.; Jangir, D.K. Micro and Nano-Crystalline Diamond Coatings of Co-cemented Tungsten Carbide Tools with Their Characterization. J. Bio- Tribo-Corros. 2021, 7, 35. [Google Scholar] [CrossRef]
- Yuan, Z.; Guo, Y.; Li, C.; Liu, L.; Yang, B.; Song, H.; Zhai, Z.; Lu, Z.; Li, H.; Staedler, T.; et al. New multilayered diamond/β-SiC composite architectures for high-performance hard coating. Mater. Des. 2020, 186, 108207. [Google Scholar] [CrossRef]
- Vidakis, N.; Antoniadis, A.; Bilalis, N. The VDI 3198 indentation test evaluation of a reliable qualitative control for layered compounds. J. Mater. Process. Technol. 2003, 143–144, 481–485. [Google Scholar] [CrossRef]
- Lei, X.; Wang, L.; Shen, B.; Sun, F. Microdrill with variations in thickness of diamond coating. Surf. Eng. 2016, 32, 165–171. [Google Scholar] [CrossRef]
- Huang, X.; Wang, C.; Yang, T.; He, Y.; Li, Y.; Zheng, L. Wear characteristics of micro-drill during ultra-high speed drilling multi-layer PCB consisting of copper foil and ceramic particle filled GFRPs. Procedia CIRP 2021, 101, 326–329. [Google Scholar] [CrossRef]
- McNamara, D.; Alveen, P.; Damm, S.; Carolan, D.; Rice, J.H.; Murphy, N.; Ivanković, A. A Raman spectroscopy investigation into the influence of thermal treatments on the residual stress of polycrystalline diamond. Int. J. Refract. Met. Hard Mater. 2015, 52, 114–122. [Google Scholar] [CrossRef]
- Mermoux, M.; Chang, S.; Girard, H.A.; Arnault, J.-C. Raman spectroscopy study of detonation nanodiamond. Diam. Relat. Mater. 2018, 87, 248–260. [Google Scholar] [CrossRef]
- Hua, C.; Yan, X.; Wei, J.; Guo, J.; Liu, J.; Chen, L.; Hei, L.; Li, C. Intrinsic stress evolution during different growth stages of diamond film. Diam. Relat. Mater. 2017, 73, 62–66. [Google Scholar] [CrossRef]
- Rajamani, A.; Sheldon, B.W.; Chason, E.; Bower, A.F. Intrinsic tensile stress and grain boundary formation during Volmer–Weber film growth. Appl. Phys. Lett. 2002, 81, 1204–1206. [Google Scholar] [CrossRef]
- Gruber, D.P.; Todt, J.; Wöhrl, N.; Zalesak, J.; Tkadletz, M.; Kubec, A.; Niese, S.; Burghammer, M.; Rosenthal, M.; Sternschulte, H.; et al. Gradients of microstructure, stresses and mechanical properties in a multi-layered diamond thin film revealed by correlative cross-sectional nano-analytics. Carbon 2019, 144, 666–674. [Google Scholar] [CrossRef]
- Xu, Z.; Lev, L.; Lukitsch, M.; Kumar, A. Effects of surface pretreatments on the deposition of adherent diamond coatings on cemented tungsten carbide substrates. Diam. Relat. Mater. 2007, 16, 461–466. [Google Scholar] [CrossRef]
- Wang, T.; Xiang, L.; Shi, W.; Jiang, X. Deposition of diamond/β-SiC/cobalt silicide composite interlayers to improve adhesion of diamond coating on WC–Co substrates by DC-Plasma Assisted HFCVD. Surf. Coat. Technol. 2011, 205, 3027–3034. [Google Scholar] [CrossRef]
- Wang, C.; Wang, X.; Shen, X.; Sun, F. Synthesis and evaluation of high-performance diamond films with multilayer structure on printed circuit board drills. Diam. Relat. Mater. 2021, 112, 108249. [Google Scholar] [CrossRef]
- Ahmed, Y.S.; Paiva, J.M.; Bose, B.; Veldhuis, S.C. New observations on built-up edge structures for improving machining performance during the cutting of superduplex stainless steel. Tribol. Int. 2019, 137, 212–227. [Google Scholar] [CrossRef]
- Boukantar, A.-R.; Djerdjare, B.; Guiberteau, F.; Ortiz, A.L. A critical comparison of the tribocorrosive performance in highly-alkaline wet medium of ultrafine-grained WC cemented carbides with Co, Co+Ni, or Co+Ni+Cr binders. Int. J. Refract. Met. Hard Mater. 2021, 95, 105452. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, C.; Wang, D.; Nie, L.; Wellmann, D.; Tian, Y. Additive manufacturing of WC-Co hardmetals: A review. Int. J. Adv. Manuf. Technol. 2020, 108, 1653–1673. [Google Scholar] [CrossRef]
- Haubner, R.; Kubelka, S.; Lux, B.; Griesser, M.; Grasserbauer, M. Murakami and H2SO4/H2O2 Pretreatment of WC-Co Hard Metal Substrates to Increase the Adhesion of CVD Diamond Coatings. J. Phys. IV Fr. 1995, 5, C5-753–C5-760. [Google Scholar] [CrossRef]
- Zhu, W.; Ignaszak, A.; Song, C.; Baker, R.; Hui, R.; Zhang, J.; Nan, F.; Botton, G.; Ye, S.; Campbell, S. Nanocrystalline tungsten carbide (WC) synthesis/characterization and its possible application as a PEM fuel cell catalyst support. Electrochim. Acta 2012, 61, 198–206. [Google Scholar] [CrossRef]
- Cabral, G.; Gäbler, J.; Lindner, J.; Grácio, J.; Polini, R. A study of diamond film deposition on WC–Co inserts for graphite machining: Effectiveness of SiC interlayers prepared by HFCVD. Diam. Relat. Mater. 2008, 17, 1008–1014. [Google Scholar] [CrossRef]
Coating Type | H2 (sccm) | CH4 (sccm) | TMS (sccm) | Filament-Microdrill Distance (mm) | Argon (sccm) | Deposition Time (h) |
---|---|---|---|---|---|---|
Microdiamond | 800 | 32 | 0 | 23 | 0 | 1.5 h |
Nanodiamond | 800 | 88 | 0 | 25 | 500 | 3 h |
Dia/SiC interlayer + nanodia. top layer | 800 | (Interlayer) 32 * | 80 * | 23 * | 0 * | 1 h * |
(top layer) 88 # | 0 # | 25 # | 500 # | 2 h # |
Murakami Etching Time (min) | Acid Etching Time (s) | Fracture Load (N) | Failure of the Microdrill During Drilling of PCBs |
---|---|---|---|
3 | 15 | 0.34 | No |
6 | 15 | 0.26 | Yes |
9 | 15 | 0.21 | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, S.; Handschuh-Wang, S.; Wang, T. Deposition of Diamond Coatings on Ultrathin Microdrills for PCB Board Drilling. Materials 2024, 17, 5593. https://doi.org/10.3390/ma17225593
Zhou S, Handschuh-Wang S, Wang T. Deposition of Diamond Coatings on Ultrathin Microdrills for PCB Board Drilling. Materials. 2024; 17(22):5593. https://doi.org/10.3390/ma17225593
Chicago/Turabian StyleZhou, Shuangqing, Stephan Handschuh-Wang, and Tao Wang. 2024. "Deposition of Diamond Coatings on Ultrathin Microdrills for PCB Board Drilling" Materials 17, no. 22: 5593. https://doi.org/10.3390/ma17225593
APA StyleZhou, S., Handschuh-Wang, S., & Wang, T. (2024). Deposition of Diamond Coatings on Ultrathin Microdrills for PCB Board Drilling. Materials, 17(22), 5593. https://doi.org/10.3390/ma17225593