Controlled Formation of Porous Cross-Bar Arrays Using Nano-Transfer Printing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Separation of Replication Patterns of Si Master Mold
2.2. Polymer Solution Preparation
2.3. Characterization
3. Results and Discussion
3.1. Nano-Transfer Printing for 3D Polymer Multi-Stacking
3.2. Control of the Spin-Coated PMMA Thickness on the Si Mold
3.3. The Effect of Spin-Coating Rotational Speed on PMMA Film Thickness
3.4. Formation of PMMA Line Pattern on the Target Substrate via nTP Process
3.5. 3D PMMA Cross-Bar Structures on Various Surfaces Using Multiple nTP Processes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pandey, K.; Perez, M.; Korveziroska, A.; Manna, U.; Biswas, M. Fabrication of TiO2 nanodot films using simple solution dipping method and block copolymer template. J. Appl. Phys. 2022, 131, 074901. [Google Scholar] [CrossRef]
- Cho, J.S.; Jang, W.; Park, K.H.; Wang, D.H. A gold nanodot array imprinting process based on solid-state dewetting for efficient oxide-free photovoltaic devices. Appl. Phys. Lett. 2020, 117, 171601. [Google Scholar] [CrossRef]
- Ulapane, S.B.; Kamathewatta, N.J.; Borkowski, A.K.; Steuart, S.J.; Berrie, C.L. Periodic silver and gold nanodot array fabrication on nanosphere lithography-based patterns using electroless deposition. J. Phys. Chem. C 2020, 124, 15646–15655. [Google Scholar] [CrossRef]
- Labchir, N.; Hammami, S.; Baril, K.; Wehbe, M.; Labau, S.; Reche, J.; Petit-Etienne, C.; Panabière, M.; Coulon, P.M.; Alloing, B. Development of Nanopillar Arrays Nanopatterning Without Lift-Off for Transferable GaN-Based µLEDs. Adv. Mater. Technol. 2024, 9, 2400166. [Google Scholar] [CrossRef]
- Haslinger, M.J.; Maier, O.S.; Pribyl, M.; Taus, P.; Kopp, S.; Wanzenboeck, H.D.; Hingerl, K.; Muehlberger, M.M.; Guillén, E. Increasing the Stability of Isolated and Dense High-Aspect-Ratio Nanopillars Fabricated Using UV-Nanoimprint Lithography. Nanomaterials 2023, 13, 1556. [Google Scholar] [CrossRef]
- Kismann, M.; Riedl, T.; Lindner, J.K. Ordered arrays of Si nanopillars with alternating diameters fabricated by nanosphere lithography and metal-assisted chemical etching. Mater. Sci. Semicond. Process. 2021, 128, 105746. [Google Scholar] [CrossRef]
- Shi, Z.; Jefimovs, K.; Stampanoni, M.; Romano, L. High aspect ratio arrays of Si nano-pillars using displacement Talbot lithography and gas-MacEtch. Mater. Sci. Semicond. Process. 2023, 157, 107311. [Google Scholar] [CrossRef]
- Sunwoo, Y.; Karunakaran, G.; Cho, E.-B. Hollow mesoporous silica nanospheres using pentablock copolymer micelle templates. Ceram. Int. 2021, 47, 13351–13362. [Google Scholar] [CrossRef]
- Lima, M.R.; Devore, D.I.; Kohn, J. Nanosphere size control by varying the ratio of poly (ester amide) block copolymer blends. J. Colloid Interface Sci. 2022, 623, 247–256. [Google Scholar] [CrossRef]
- Chang, W.; Kim, J.; Choi, D.; Han, C. Fabrication of nano-electrode arrays of free-standing carbon nanotubes on nano-patterned substrate by imprint method. Appl. Surf. Sci. 2011, 257, 3063–3068. [Google Scholar] [CrossRef]
- Dore, C.; Dörling, B.; Garcia-Pomar, J.L.; Campoy-Quiles, M.; Mihi, A. Hydroxypropyl cellulose adhesives for transfer printing of carbon nanotubes and metallic nanostructures. Small 2020, 16, 2004795. [Google Scholar] [CrossRef] [PubMed]
- In, J.B.; Lee, D.; Fornasiero, F.; Noy, A.; Grigoropoulos, C.P. Laser-assisted simultaneous transfer and patterning of vertically aligned carbon nanotube arrays on polymer substrates for flexible devices. ACS Nano 2012, 6, 7858–7866. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, Z.; Su, M.; Huang, Z.; Li, Z.; Li, F.; Pan, Q.; Ren, W.; Hu, X.; Li, L. A general strategy for printing colloidal nanomaterials into one-dimensional micro/nanolines. Nanoscale 2018, 10, 22374–22380. [Google Scholar] [CrossRef] [PubMed]
- Wen, T.; Ni, B.; Liu, Y.; Zhang, W.; Guo, Z.-H.; Lee, Y.-C.; Ho, R.-M.; Cheng, S.Z. Towards achieving a large-area and defect-free nano-line pattern via controlled self-assembly by sequential annealing. Giant 2021, 8, 100078. [Google Scholar] [CrossRef]
- Chen, R.; Wang, X.; Li, X.; Wang, H.; He, M.; Yang, L.; Guo, Q.; Zhang, S.; Zhao, Y.; Li, Y.; et al. A comprehensive nano-interpenetrating semiconducting photoresist toward all-photolithography organic electronics. Sci. Adv. 2021, 7, eabg0659. [Google Scholar] [CrossRef]
- Paik, S.; Kim, G.; Chang, S.; Lee, S.; Jin, D.; Jeong, K.-Y.; Lee, I.S.; Lee, J.; Moon, H.; Lee, J. Near-field sub-diffraction photolithography with an elastomeric photomask. Nat. Commun. 2020, 11, 805. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kim, E.A.; Han, J.; Choi, Y.H.; Hahm, D.; Kang, C.J.; Bae, W.K.; Lim, J.; Cho, S.Y. Nondestructive direct photolithography for patterning quantum dot films by atomic layer deposition of ZnO. Adv. Mater. Interfaces 2022, 9, 2200835. [Google Scholar] [CrossRef]
- Abbasi, R.; Mayyas, M.; Ghasemian, M.B.; Centurion, F.; Yang, J.; Saborio, M.; Allioux, F.-M.; Han, J.; Tang, J.; Christoe, M.J.; et al. Photolithography–enabled direct patterning of liquid metals. J. Mater. Chem. C 2020, 8, 7805–7811. [Google Scholar] [CrossRef]
- Liu, W.; Wang, J.; Xu, X.; Zhao, C.; Xu, X.; Weiss, P.S. Single-step dual-layer photolithography for tunable and scalable nanopatterning. ACS Nano 2021, 15, 12180–12188. [Google Scholar] [CrossRef]
- Sebastian, E.M.; Jain, S.K.; Purohit, R.; Dhakad, S.; Rana, R. Nanolithography and its current advancements. Mater. Today Proc. 2020, 26, 2351–2356. [Google Scholar] [CrossRef]
- Zhao, Z.-J.; Shin, S.-H.; Lee, S.Y.; Son, B.; Liao, Y.; Hwang, S.; Jeon, S.; Kang, H.; Kim, M.; Jeong, J.-H. Direct chemisorption-assisted nanotransfer printing with wafer-scale uniformity and controllability. ACS Nano 2022, 16, 378–385. [Google Scholar] [CrossRef] [PubMed]
- Cheon, S.; Lee, W.W.; Park, W.I.; Jung, J.-Y.; Choi, J.-H.; Choi, D.-G.; Jeon, S.; Jeong, J.-h.; Lee, J. Fabrication of arrangement-controlled and vertically grown ZnO nanorods by metal nanotransfer printing. J. Ind. Eng. Chem. 2020, 81, 385–392. [Google Scholar] [CrossRef]
- Ko, J.; Zhao, Z.-J.; Hwang, S.H.; Kang, H.-J.; Ahn, J.; Jeon, S.; Bok, M.; Jeong, Y.; Kang, K.; Cho, I.; et al. Nanotransfer printing on textile substrate with water-soluble polymer nanotemplate. ACS Nano 2020, 14, 2191–2201. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.H.; Zhao, Z.-J.; Jeon, S.; Kang, H.; Ahn, J.; Jeong, J.H. Repeatable and metal-independent nanotransfer printing based on metal oxidation for plasmonic color filters. Nanoscale 2019, 11, 11128–11137. [Google Scholar] [CrossRef] [PubMed]
- Jeong, Y.; Kang, H.-J.; Zhao, Z.-J.; Ahn, J.; Hwang, S.H.; Jeon, S.; Ko, J.; Jung, J.-Y.; Park, I.; Jeong, J.-H. Robust nanotransfer printing by imidization-induced interlocking. Appl. Surf. Sci. 2021, 552, 149500. [Google Scholar] [CrossRef]
- Fan, Y.; Wang, C.; Sun, J.; Peng, X.; Tian, H.; Li, X.; Chen, X.; Chen, X.; Shao, J. Electric-driven flexible-roller nanoimprint lithography on the stress-sensitive warped wafer. Int. J. Extrem. Manuf. 2023, 5, 035101. [Google Scholar] [CrossRef]
- Einck, V.J.; Torfeh, M.; McClung, A.; Jung, D.E.; Mansouree, M.; Arbabi, A.; Watkins, J.J. Scalable nanoimprint lithography process for manufacturing visible metasurfaces composed of high aspect ratio TiO2 meta-atoms. ACS Photonics 2021, 8, 2400–2409. [Google Scholar] [CrossRef]
- McGrath, F.; Qian, J.; Gwynne, K.; Kumah, C.; Daly, D.; Hrelescu, C.; Zhang, X.; O’Carroll, D.M.; Bradley, A.L. Structural, optical, and electrical properties of silver gratings prepared by nanoimprint lithography of nanoparticle ink. Appl. Surf. Sci. 2021, 537, 147892. [Google Scholar] [CrossRef]
- Buhl, J.; Yoo, D.; Köpke, M.; Gerken, M. Two-dimensional nanograting fabrication by multistep nanoimprint lithography and ion beam etching. Nanomanufacturing 2021, 1, 39–48. [Google Scholar] [CrossRef]
- Liu, G.; Rong, M.; Hu, H.; Chen, L.; Xie, Z.; Zheng, Z. 3D Dip-Pen Nanolithography. Adv. Mater. Technol. 2022, 7, 2101493. [Google Scholar] [CrossRef]
- Schlichter, L.; Bosse, F.; Tyler, B.J.; Arlinghaus, H.F.; Ravoo, B.J. Patterning of Hydrophilic and Hydrophobic Gold and Magnetite Nanoparticles by Dip Pen Nanolithography. Small 2023, 19, 2208069. [Google Scholar] [CrossRef] [PubMed]
- Dieleman, C.D.; Ding, W.; Wu, L.; Thakur, N.; Bespalov, I.; Daiber, B.; Ekinci, Y.; Castellanos, S.; Ehrler, B. Universal direct patterning of colloidal quantum dots by (extreme) ultraviolet and electron beam lithography. Nanoscale 2020, 12, 11306–11316. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.N.; Chung, H.; Sow, C.; Wee, A. Nanoscale materials patterning and engineering by atomic force microscopy nanolithography. Mater. Sci. Eng. R Rep. 2006, 54, 1–48. [Google Scholar] [CrossRef]
- Park, T.W.; Byun, M.; Jung, H.; Lee, G.R.; Park, J.H.; Jang, H.-I.; Lee, J.W.; Kwon, S.H.; Hong, S.; Lee, J.-H.; et al. Thermally assisted nanotransfer printing with sub–20-nm resolution and 8-inch wafer scalability. Sci. Adv. 2020, 6, eabb6462. [Google Scholar] [CrossRef]
- Stuart, C.; Park, H.K.; Chen, Y. Fabrication of a 3D nanoscale crossbar circuit by nanotransfer-printing lithography. Small 2010, 6, 1663–1668. [Google Scholar] [CrossRef]
- Tiefenauer, R.F.; Tybrandt, K.; Aramesh, M.; Voros, J. Fast and versatile multiscale patterning by combining template-stripping with nanotransfer printing. ACS Nano 2018, 12, 2514–2520. [Google Scholar] [CrossRef]
- Kim, Y.J.; Lee, G.R.; Cho, E.N.; Jung, Y.S. Fabrication and applications of 3D nanoarchitectures for advanced electrocatalysts and sensors. Adv. Mater. 2020, 32, 1907500. [Google Scholar] [CrossRef]
- Hu, S.; Huan, X.; Liu, Y.; Cao, S.; Wang, Z.; Kim, J.T. Recent advances in meniscus-on-demand three-dimensional micro-and nano-printing for electronics and photonics. Int. J. Extrem. Manuf. 2023, 5, 032009. [Google Scholar] [CrossRef]
- Huang, H.; Liu, R.; Ross, C.A.; Alexander-Katz, A. Self-directed self-assembly of 3D tailored block copolymer nanostructures. ACS Nano 2020, 14, 15182–15192. [Google Scholar] [CrossRef]
- Ross, C.A.; Berggren, K.K.; Cheng, J.Y.; Jung, Y.S.; Chang, J.B. Three-dimensional nanofabrication by block copolymer self-assembly. Adv. Mater. 2014, 26, 4386–4396. [Google Scholar] [CrossRef]
- Jung, H.; Shin, W.H.; Park, T.W.; Choi, Y.J.; Yoon, Y.J.; Park, S.H.; Lim, J.-H.; Kwon, J.-D.; Lee, J.W.; Kwon, S.-H.; et al. Hierarchical multi-level block copolymer patterns by multiple self-assembly. Nanoscale 2019, 11, 8433–8441. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.W.; Yang, S.R.; Hur, Y.H.; Kim, S.W.; Baek, K.M.; Yim, S.; Jang, H.-I.; Park, J.H.; Lee, S.Y.; Park, C.-O.; et al. High-resolution nanotransfer printing applicable to diverse surfaces via interface-targeted adhesion switching. Nat. Commun. 2014, 5, 5387. [Google Scholar] [CrossRef] [PubMed]
- Park, T.W.; Kang, Y.L.; Kim, Y.N.; Park, W.I. High-Resolution Nanotransfer Printing of Porous Crossbar Array Using Patterned Metal Molds by Extreme-Pressure Imprint Lithography. Nanomaterials 2023, 13, 2335. [Google Scholar] [CrossRef] [PubMed]
- Zaumseil, J.; Meitl, M.A.; Hsu, J.W.; Acharya, B.R.; Baldwin, K.W.; Loo, Y.-L.; Rogers, J.A. Three-dimensional and multilayer nanostructures formed by nanotransfer printing. Nano Lett. 2003, 3, 1223–1227. [Google Scholar] [CrossRef]
- Duan, Y.; Xie, W.; Yin, Z.; Huang, Y. Multi-material 3D nanoprinting for structures to functional micro/nanosystems. Int. J. Extrem. Manuf. 2024, 6, 063001. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.N.; Kang, E.B.; Park, T.W.; Park, W.I. Controlled Formation of Porous Cross-Bar Arrays Using Nano-Transfer Printing. Materials 2024, 17, 5609. https://doi.org/10.3390/ma17225609
Kim YN, Kang EB, Park TW, Park WI. Controlled Formation of Porous Cross-Bar Arrays Using Nano-Transfer Printing. Materials. 2024; 17(22):5609. https://doi.org/10.3390/ma17225609
Chicago/Turabian StyleKim, Yu Na, Eun Bin Kang, Tae Wan Park, and Woon Ik Park. 2024. "Controlled Formation of Porous Cross-Bar Arrays Using Nano-Transfer Printing" Materials 17, no. 22: 5609. https://doi.org/10.3390/ma17225609
APA StyleKim, Y. N., Kang, E. B., Park, T. W., & Park, W. I. (2024). Controlled Formation of Porous Cross-Bar Arrays Using Nano-Transfer Printing. Materials, 17(22), 5609. https://doi.org/10.3390/ma17225609