Effect of Hydrogen on High Cycle Fatigue Properties of L360 Pipeline Steel Notched Specimens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Slow Strain Rate Tensile Test
2.3. Fatigue Life Test
2.4. Fatigue Crack Growth Rate Test
3. Results
3.1. Slow Strain Rate Tensile Test
3.2. Notched Fatigue Life Test
3.3. Fatigue Crack Growth Test
3.4. Fracture Morphology
4. Discussion
5. Conclusions
- As the stress decreases, the fatigue life under the hydrogen environment gradually approaches that of the specimens under the nitrogen environment, which indicates that the effect of hydrogen on the fatigue life of notched specimens decreases with the increase in stress.
- The fatigue life specimens’ fracture has two significantly different areas in the hydrogen environment, and the area of Region Ⅰ increases as the load stress decreases. This is mainly due to the fact that with the decrease in stress, the specimens need to be subjected to more cycles to achieve the stress intensity factor ΔK required for hydrogen to promote rapid crack extension.
- The fracture in the hydrogen environment has little difference in Region Ⅰ from the specimens in the nitrogen environment. It indicates that the presence of hydrogen does not have much effect in the process of crack initiation and gradually expanding in stage I. A large number of hydrogen embrittlement features were found in Region II, which suggests that hydrogen mainly increases the fatigue crack extension rate in stage II and significantly reduces the total fatigue life in the hydrogen environment.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tumala, M.M.; Salisu, A.; Nmadu, Y.B. Climate change and fossil fuel prices: A GARCH-MIDAS analysis. Energy Econ. 2023, 124, 106792. [Google Scholar] [CrossRef]
- Thombs, R.P. The asymmetric effects of fossil fuel dependency on the carbon intensity of well-being: A U.S. state-level analysis. 1999–2017. Glob. Environ. Change 2022, 77, 102605. [Google Scholar] [CrossRef]
- Hielscher, S.; Wittmayer, J.M.; Dańkowska, A. Social movements in energy transitions: The politics of fossil fuel energy pathways in the United Kingdom, the Netherlands and Poland. Extr. Ind. Soc. 2022, 10, 101073. [Google Scholar] [CrossRef]
- Chow, J.; Kopp, R.J.; Portney, P.R. Energy resources and global development. Science 2003, 302, 1528–1531. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Wei, Z.; Ji, Q.; Wang, C.; Gao, G. Global renewable energy development: Influencing factors, trend predictions and countermeasures. Resour. Policy 2019, 63, 101470. [Google Scholar] [CrossRef]
- Hassan, Q.; Sameen, A.Z.; Olapade, O.; Alghoul, M.; Salman, H.M.; Jaszczur, M. Hydrogen fuel as an important element of the energy storage needs for future smart cities. Int. J. Hydrogen Energy 2023, 48, 30247–30262. [Google Scholar] [CrossRef]
- Demir, M.E.; Dincer, I. Cost assessment and evaluation of various hydrogen delivery scenarios. Int. J. Hydrogen Energy 2018, 43, 10420–10430. [Google Scholar] [CrossRef]
- Liu, B.; Liu, S.; Guo, S.; Zhang, S. Economic study of a large-scale renewable hydrogen application utilizing surplus renewable energy and natural gas pipeline transportation in China. Int. J. Hydrogen Energy 2020, 45, 1385–1398. [Google Scholar] [CrossRef]
- Capelle, J.; Gilgert, J.; Dmytrakh, I.; Pluvinage, G. Sensitivity of pipelines with steel API X52 to hydrogen embrittlement. Int. J. Hydrogen Energy 2008, 33, 7630–7641. [Google Scholar] [CrossRef]
- Wang, R. Effects of hydrogen on the fracture toughness of a X70 pipeline steel. Corros. Sci. 2009, 51, 2803–2810. [Google Scholar] [CrossRef]
- Dadfarnia, M.; Novak, P.; Ahn, D.C.; Liu, J.B.; Sofronis, P.; Johnson, D.D.; Robertson, I.M. Recent advances in the study of structural materials compatibility with hydrogen. Adv. Mater. 2010, 22, 1128–1135. [Google Scholar] [CrossRef] [PubMed]
- Moro, I.; Briottet, L.; Lemoine, P.; Andrieu, E.; Blanc, C.; Odemer, G. Hydrogen embrittlement susceptibility of a high strength steel X80. Mater. Sci. Eng. A 2010, 527, 7252–7260. [Google Scholar] [CrossRef]
- Barthélémy, H. Effects of pressure and purity on the hydrogen embrittlement of steels. Int. J. Hydrogen Energy 2011, 36, 2750–2758. [Google Scholar] [CrossRef]
- Briottet, L.; Moro, I.; Lemoine, P. Quantifying the hydrogen embrittlement of pipeline steels for safety considerations. Int. J. Hydrogen Energy 2012, 37, 17616–17623. [Google Scholar] [CrossRef]
- Gaddam, R.; Hörnqvist, M.; Antti, M.-L.; Pederson, R. Influence of high-pressure gaseous hydrogen on the low-cycle fatigue and fatigue crack growth properties of a cast titanium alloy. Mater. Sci. Eng. A 2014, 612, 354–362. [Google Scholar] [CrossRef]
- Briottet, L.; Moro, I.; Escot, M.; Furtado, J.; Bortot, P.; Tamponi, G.; Solin, J.; Odemer, G.; Blanc, C.; Andrieu, E. Fatigue crack initiation and growth in a CrMo steel under hydrogen pressure. Int. J. Hydrogen Energy 2015, 40, 17021–17030. [Google Scholar] [CrossRef]
- Wang, M.; Akiyama, E.; Tsuzaki, K. Crosshead speed dependence of the notch tensile strength of a high strength steel in the presence of hydrogen. Scr. Mater. 2005, 53, 713–718. [Google Scholar] [CrossRef]
- Dadfarnia, M.; Sofronis, P.; Neeraj, T. Hydrogen interaction with multiple traps: Can it be used to mitigate embrittlement? Int. J. Hydrogen Energy 2011, 36, 10141–10148. [Google Scholar] [CrossRef]
- Nagao, A.; Martin, M.L.; Dadfarnia, M.; Sofronis, P.; Robertson, I.M. The effect of nanosized (Ti,Mo)C precipitates on hydrogen embrittlement of tempered lath martensitic steel. Acta Mater. 2014, 74, 244–254. [Google Scholar] [CrossRef]
- Meng, B.; Gu, C.; Zhang, L.; Zhou, C.; Li, X.; Zhao, Y.; Zheng, J.; Chen, X. Hydrogen effects on X80 pipeline steel in high-pressure natural gas/hydrogen mixtures. Int. J. Hydrogen Energy 2017, 42, 7404–7412. [Google Scholar] [CrossRef]
- Zhou, D.; Li, T.; Huang, D.; Wu, Y.; Huang, Z.; Xiao, W.; Wang, Q.; Wang, X. The experiment study to assess the impact of hydrogen blended natural gas on the tensile properties and damage mechanism of X80 pipeline steel. Int. J. Hydrogen Energy 2021, 46, 7402–7414. [Google Scholar] [CrossRef]
- Nagaishi, N.; Yoshikawa, M.; Okazaki, S.; Yamabe, J.; Yoshida, F.; Matsunaga, H. Evaluation of fatigue life and fatigue limit of circumferentially-notched Type 304 stainless steel in air and hydrogen gas based on crack-growth property and cyclic stress-strain response. Eng. Fract. Mech. 2019, 215, 164–177. [Google Scholar] [CrossRef]
- An, T.; Peng, H.; Bai, P.; Zheng, S.; Wen, X.; Zhang, L. Influence of hydrogen pressure on fatigue properties of X80 pipeline steel. Int. J. Hydrogen Energy 2017, 42, 15669–15678. [Google Scholar] [CrossRef]
- GB/T 223. GB/T 223.79; Iron and Steel—Determination of Multi—Element Contents—X-Ray Fluorescence Spectrometry (Routine Method). Standardization Administration of China (SAC): Beijing, China, 2007.
- GB/T 228. GB/T 228.1-2021; Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature. Standardization Administration of China (SAC): Beijing, China, 2021.
- GB/T 6398-2017; Metallic Materials—Fatigue Testing—Fatigue Crack Growth Method. Standardization Administration of China (SAC): Beijing, China, 2017.
- Zafra, A.; Álvarez, G.; Benoit, G.; Henaff, G.; Martinez-Pañeda, E.; Rodríguez, C.; Belzunce, J. Hydrogen-assisted fatigue crack growth: Pre-charging vs in-situ testing in gaseous environments. Mater. Sci. Eng. A 2023, 871, 144885. [Google Scholar] [CrossRef]
- Birenis, D.; Ogawa, Y.; Matsunaga, H.; Takakuwa, O.; Yamabe, J.; Prytz; Thøgersen, A. Interpretation of hydrogen-assisted fatigue crack propagation in BCC iron based on dislocation structure evolution around the crack wake. Acta Mater. 2018, 156, 245–253. [Google Scholar] [CrossRef]
- Huang, C.; Zhao, Y.; Xin, S.; Tan, C.; Zhou, W.; Li, Q.; Zeng, W. Effect of microstructure on high cycle fatigue behavior of Ti–5Al–5Mo–5V–3Cr–1Zr titanium alloy. Int. J. Fatigue 2017, 94, 30–40. [Google Scholar] [CrossRef]
- Neeraj, T.; Srinivasan, R.; Li, J. Hydrogen embrittlement of ferritic steels: Observations on deformation microstructure, nanoscale dimples and failure by nanovoiding. Acta Mater. 2012, 60, 5160–5171. [Google Scholar] [CrossRef]
- An, T.; Zheng, S.; Peng, H.; Wen, X.; Chen, L.; Zhang, L. Synergistic action of hydrogen and stress concentration on the fatigue properties of X80 pipeline steel. Mater. Sci. Eng. A 2017, 700, 321–330. [Google Scholar] [CrossRef]
- Zeng, B.; Zhang, G.; Zhang, K.; Qin, S.; Li, Y. Effect of hydrogen on low-cycle fatigue behavior of HRB400 steel under asymmetric cyclic loading. Int. J. Hydrogen Energy 2023, 48, 422–435. [Google Scholar] [CrossRef]
- Mohtadi-Bonab, M.A. Effect of different parameters on hydrogen affected fatigue failure in pipeline steels. Eng. Fail. Anal. 2022, 137, 106262. [Google Scholar] [CrossRef]
- Li, W.X.; Zhao, S.W.; He, P.F.; Wang, B.J. Experimental and numerical study on high-cycle fatigue performance of austenitic stainless steel with pre-charged hydrogen. Int. J. Fatigue 2024, 185, 108359. [Google Scholar] [CrossRef]
C | Si | Mn | P | S | V | Ti | Fe |
---|---|---|---|---|---|---|---|
0.24 | 0.45 | 1.40 | 0.025 | 0.015 | 0.1 | 0.04 | balance |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, L.; Zhang, L. Effect of Hydrogen on High Cycle Fatigue Properties of L360 Pipeline Steel Notched Specimens. Materials 2024, 17, 5612. https://doi.org/10.3390/ma17225612
Huang L, Zhang L. Effect of Hydrogen on High Cycle Fatigue Properties of L360 Pipeline Steel Notched Specimens. Materials. 2024; 17(22):5612. https://doi.org/10.3390/ma17225612
Chicago/Turabian StyleHuang, Liangliang, and Lin Zhang. 2024. "Effect of Hydrogen on High Cycle Fatigue Properties of L360 Pipeline Steel Notched Specimens" Materials 17, no. 22: 5612. https://doi.org/10.3390/ma17225612
APA StyleHuang, L., & Zhang, L. (2024). Effect of Hydrogen on High Cycle Fatigue Properties of L360 Pipeline Steel Notched Specimens. Materials, 17(22), 5612. https://doi.org/10.3390/ma17225612