Tensile Properties of Ex-Situ Ti-TiC Metal Matrix Composites Manufactured by Laser Powder Bed Fusion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Powder Preparation
2.2. Laser Powder Bed Fusion Processing and Heat Treatment
2.3. Microstructural and Mechanical Characterization
3. Results and Discussion
3.1. As-Built MMCs Microstructure
3.2. Heat-Treated Microstructure
3.3. Density Characterization
3.4. Mechanical Properties
4. Conclusions
- A density > 99% is achieved with the lowest reinforcement particle sizes, while a density >98% is achieved with the other one.
- A drastic evolution of the reinforcement content (12 vol% to 21 vol%) and C/Ti ratio (0.98 to 0.8) is observed following LPBF and heat treatment. The effect of the variation of TiC elastic properties and volumetric fraction on composite elastic properties is discussed.
- Young’s moduli of both MMCs are 26% higher (149 GPa) than the one of Ti grade 2.
- The fracture strain after heat treatment is more than twice the one observed in as-built conditions thanks to the conversion of dendritic TiCx into equiaxed TiCx.
- The elastic modulus is not affected by the heat treatment. It is proposed that the decrease in TiC’s elastic modulus induced by the reduction in the C/Ti ratio is compensated by the increase in the TiCx volumetric fraction.
- Lower particle sizes are shown to be beneficial for both density and mechanical properties and are correlated to a lower fraction of un-dissolved TiC particles. In addition, ductility increase after heat treatment is more pronounced for the latter.
- Fracture up to 1.7% is achieved after heat treatment and for lower particle size distribution. The value is 30% higher than previously reported for Ti-based MMCs produced by LPBF with a similar elastic modulus. This improvement demonstrates the potential of heat-treated Ti-TiC and is a first step in enabling its use in stiffness-driven applications.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Ti [wt%] | C [wt%] | O [wt%] | H [wt%] | N [wt%] | Fe [wt%] | Other [wt%] | |
---|---|---|---|---|---|---|---|
Ti grade 2 | balance | 0.01 | 0.14 | 0.002 | 0.01 | 0.02 | <0.2 |
TiC | balance | 19.6 | 0.5 | - | - | 0.2 | <0.01 |
ASTM E8 [mm] | Effective Dimensions [mm] | |
---|---|---|
G—Gauge length | 10 ± 0.1 | 10 |
D—Diameter | 2.5±0.1 | 2.5 |
R—Radius of filler, min | 2 | 2 |
A—Length of reduced parallel section, min | 16 | 25 |
References
- Bartolomeu, F.; Michael, G.; Filipe, S.S.; Georgina, M. Mechanical Properties of Ti6Al4V Fabricated by Laser Powder Bed Fusion: A Review Focused on the Processing and Microstructural Parameters Influence on the Final Properties. Metals 2022, 12, 986. [Google Scholar] [CrossRef]
- Chandran, K.S.R.; Panda, K.B.; Sahay, S.S. TiBw-reinforced Ti composites: Processing, properties, application prospects, and research needs. JOM 2004, 56, 42–48. [Google Scholar] [CrossRef]
- Lagos, M.A.; Agote, I.; Atxaga, G.; Adarraga, O.; Pambaguian, L. Fabrication and characterisation of Titanium Matrix Composites obtained using a combination of Self propagating High temperature Synthesis and Spark Plasma Sintering. Mater. Sci. Eng. A 2016, 655, 44–49. [Google Scholar] [CrossRef]
- Kim, M.-K.; Fang, Y.; Kim, J.; Kim, T.; Zhang, Y.; Jeong, W.; Suhr, J. Strategies and Outlook on Metal Matrix Composites Produced Using Laser Powder Bed Fusion: A Review. Metals 2023, 13, 1658. [Google Scholar] [CrossRef]
- Attar, H.; Ehtemam-Haghighi, S.; Kent, D.; Dargusch, M.S. Recent developments and opportunities in additive manufacturing of titanium-based matrix composites: A review. Int. J. Mach. Tools Manuf. 2018, 133, 85–102. [Google Scholar] [CrossRef]
- Hayat, M.D.; Singh, H.; He, Z.; Cao, P. Titanium metal matrix composites: An overview. Compos. Part A Appl. Sci. Manuf. 2019, 121, 418–438. [Google Scholar] [CrossRef]
- Xi, L.; Ding, K.; Gu, D.; Guo, S.; Cao, M.; Zhuang, J.; Lin, K.; Okulov, I.; Sarac, B.; Eckert, J.; et al. Interfacial structure and wear properties of selective laser melted Ti/(TiC + TiN) composites with high content of reinforcements. J. Alloys Compd. 2021, 870, 159436. [Google Scholar] [CrossRef]
- Radhakrishnan, M.; Hassan, M.; Long, B.; Otazu, D.; Lienert, T.; Anderoglu, O. Microstructures and properties of Ti/TiC composites fabricated by laser-directed energy deposition. Addit. Manuf. 2021, 46, 102198. [Google Scholar] [CrossRef]
- Gu, D.; Meng, G.; Li, C.; Meiners, W.; Poprawe, R. Selective laser melting of TiC/Ti bulk nanocomposites: Influence of nanoscale reinforcement. Scr. Mater. 2012, 67, 185–188. [Google Scholar] [CrossRef]
- Gu, D.; Hagedorn, Y.-C.; Meiners, W.; Wissenbach, K.; Poprawe, R. Nanocrystalline TiC reinforced Ti matrix bulk-form nanocomposites by Selective Laser Melting (SLM): Densification, growth mechanism and wear behavior. Compos. Sci. Technol. 2011, 71, 1612–1620. [Google Scholar] [CrossRef]
- Yan, Q.; Chen, B.; Li, J. Super-high-strength graphene/titanium composites fabricated by selective laser melting. Carbon 2021, 174, 451–462. [Google Scholar] [CrossRef]
- Andrieux, J.; Gardiola, B.; Dezellus, O. Synthesis of Ti matrix composites reinforced with TiC particles: In situ synchrotron X-Ray diffraction and modeling. J. Mater. Sci. 2018, 53, 9533–9544. [Google Scholar] [CrossRef]
- Roger, J.; Gardiola, B.; Andrieux, J.; Viala, J.-C.; Dezellus, O. Synthesis of Ti matrix composites reinforced with TiC particles: Thermodynamic equilibrium and change in microstructure. J. Mater. Sci. 2016, 52, 4129–4141. Available online: https://link.springer.com/article/10.1007/s10853-016-0677-y (accessed on 24 November 2020). [CrossRef]
- Lin, Y.; Zee, R.H.; Chin, B.A. In situ formation of three-dimensional TiC reinforcements in Ti-TiC composites. Met. Trans. A 1991, 22, 859–865. [Google Scholar] [CrossRef]
- Kurlov, A.S.; Gusev, A.I. High-energy milling of nonstoichiometric carbides: Effect of nonstoichiometry on particle size of nanopowders. J. Alloys Compd. 2014, 582, 108–118. [Google Scholar] [CrossRef]
- E28 Committee. Test Methods for Tension Testing of Metallic Materials; ASTM International: West Conshohocken, PA, USA, 2016. [Google Scholar] [CrossRef]
- Wang, J.; Li, L.; Lin, P.; Wang, J. Effect of TiC particle size on the microstructure and tensile properties of TiCp/Ti6Al4V composites fabricated by laser melting deposition. Opt. Laser Technol. 2018, 105, 195–206. [Google Scholar] [CrossRef]
- Haase, F.; Siemers, C.; Rösler, J. Laser powder bed fusion (LPBF) of commercially pure titanium and alloy development for the LPBF process. Front. Bioeng. Biotechnol. 2023, 11, 1260925. [Google Scholar] [CrossRef]
- Szkliniarz, A.; Szkliniarz, W. Carbon in Commercially Pure Titanium. Materials 2023, 16, 711. [Google Scholar] [CrossRef]
- Fogarassy, Z.; Oláh, N.; Cora, I.; Horváth, Z.E.; Csanádi, T.; Sulyok, A.; Balázsi, K. The structural and mechanical characterization of TiC and TiC/Ti thin films grown by DC magnetron sputtering. J. Eur. Ceram. Soc. 2018, 38, 2886–2892. [Google Scholar] [CrossRef]
- Vasanthakumar, K.; Bakshi, S.R. Effect of C/Ti ratio on densification, microstructure and mechanical properties of TiCx prepared by reactive spark plasma sintering. Ceram. Int. 2018, 44, 484–494. [Google Scholar] [CrossRef]
- Guemmaz, M.; Mosser, A.; Boudoukha, L.; Grob, J.J.; Raiser, D.; Sens, J.C. Ion beam synthesis of non-stoichiometric titanium carbide: Composition structure and nanoindentation studies. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 1996, 111, 263–270. [Google Scholar] [CrossRef]
- Zhang, J.; Dong, H.; Li, X.; Wang, Z.; Dong, X. First-principles study on the stability and mechanical properties of TiCxN1−x. J. Mater. Sci. 2023, 58, 4474–4486. [Google Scholar] [CrossRef]
- Hashin, Z.; Shtrikman, S. A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids 1963, 11, 127–140. [Google Scholar] [CrossRef]
Hatching Region | Contour | General Parameters | |||
---|---|---|---|---|---|
VED [J/mm3] | Hatching distance [µm] | VED [J/mm3] | Layer thickness [µm] | Contour distance [µm] | Contour number [-] |
166.7 | 40 | 52 | 30 | 30 | 1 |
Parameters | TiC45 AB | TiC23 AB | TiC45 HT | TiC23 HT |
---|---|---|---|---|
[Å] | 2.957 | 2.956 | 2.961 | 2.961 |
[Å] | 4.698 | 4.698 | 4.707 | 4.706 |
[-] | 1.589 | 1.589 | 1.590 | 1.589 |
[Å] | 4.279 | 4.282 | 4.319 | 4.318 |
* [Å] | 4.295 | 4.308 | 4.324 | 4.326 |
[-] | 0.45 | 0.55 | 0.76 | 0.81 |
[Å] | 4.321 | 4.310 | x | x |
* [Å] | 4.326 | 4.326 | x | x |
[-] | 1.00 | 1.00 | x | x |
Sample | Sample Density [%] | Hatching Density [%] |
---|---|---|
TiC23 | 99.5 | 99.9 |
TiC45 | 98.8 | 99.1 |
TiC45 AB | TiC45 HT | TiC23 AB | TiC23 HT | Ti | |
---|---|---|---|---|---|
E300 [GPa] | 153 ± 4 | 148 ± 7 | 149 ± 17 | 147 ± 4 | 117 ± 7 |
E700 [GPa] | - | 149 ± 9 | - | 149 ± 3 | - |
YS [MPa] | - | 700 ± 74 | - | 806 ± 20 | 512 ± 6 |
UTS [MPa] | 668 ± 21 | 752 ± 11 | 778 ± 15 | 827 ± 9 | 576 ± 4 |
e [%] | 0.5 ± 0.0 | 1.3 ± 0.1 | 0.7 ± 0.1 | 1.7 ± 0.2 | 29.3 ± 3.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernard, G.; Pejchal, V.; Sereda, O.; Logé, R.E. Tensile Properties of Ex-Situ Ti-TiC Metal Matrix Composites Manufactured by Laser Powder Bed Fusion. Materials 2024, 17, 5613. https://doi.org/10.3390/ma17225613
Bernard G, Pejchal V, Sereda O, Logé RE. Tensile Properties of Ex-Situ Ti-TiC Metal Matrix Composites Manufactured by Laser Powder Bed Fusion. Materials. 2024; 17(22):5613. https://doi.org/10.3390/ma17225613
Chicago/Turabian StyleBernard, Gaëtan, Vaclav Pejchal, Olha Sereda, and Roland E. Logé. 2024. "Tensile Properties of Ex-Situ Ti-TiC Metal Matrix Composites Manufactured by Laser Powder Bed Fusion" Materials 17, no. 22: 5613. https://doi.org/10.3390/ma17225613
APA StyleBernard, G., Pejchal, V., Sereda, O., & Logé, R. E. (2024). Tensile Properties of Ex-Situ Ti-TiC Metal Matrix Composites Manufactured by Laser Powder Bed Fusion. Materials, 17(22), 5613. https://doi.org/10.3390/ma17225613