Water Resistance of Compressed Earth Blocks Stabilised with Thermoactivated Recycled Cement
Abstract
:1. Introduction
2. Experimental Programme
2.1. Earth Characterisation
2.2. Binder Characterisation
2.3. Compositions and Production of CEB
2.4. Test Methods
3. Results and Discussion
3.1. Thermogravimetry and X-Ray Diffraction
3.2. Density and Total Porosity
3.3. Compressive Strength
3.4. Water Absorption by Immersion
3.5. Capillary Water Absorption
3.6. Low-Pressure Water Absorption by Karsten Tubes
3.7. Water Permeability
3.8. Resistance to Water Erosion by Spray Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schroeder, H. Modern Earth Building Codes, Standards and Normative Development. In Modern Earth Buildings: Materials, Engineering, Constructions and Applications; Hall, M., Lindsay, R., Krayenhoff, M., Eds.; Woodhead Publish Limited: Cambridge, UK, 2012; pp. 72–109. [Google Scholar]
- Jayasinghe, C.; Fonseka, W.M.C.D.J.; Abeygunawardhene, Y.M. Load Bearing Properties of Composite Masonry Constructed with Recycled Building Demolition Waste and Cement Stabilized Rammed Earth. Constr. Build. Mater. 2016, 102, 471–477. [Google Scholar] [CrossRef]
- Walker, P.J. Strength and Erosion Characteristics of Earth Blocks and Earth Block Masonry. J. Mater. Civ. Eng. 2004, 16, 497–506. [Google Scholar] [CrossRef]
- Hall, M.; Swaney, W. European Modern Earth Construction. In Modern Earth Buildings: Materials, Engineering, Constructions and Applications; Hall, M., Lindsay, R., Krayenhoff, M., Eds.; Woodhead Publishing Limited: Cambridge, UK, 2012; pp. 650–712. [Google Scholar]
- Alam, I.; Naseer, A.; Shah, A.A. Economical Stabilization of Clay for Earth Buildings Construction in Rainy and Flood Prone Areas. Constr. Build. Mater. 2015, 77, 154–159. [Google Scholar] [CrossRef]
- Venkatarama Reddy, B.V. Stabilised Soil Blocks for Structural Masonry in Earth Construction. In Modern Earth Buildings: Materials, Engineering, Constructions and Applications; Hall, M., Lindsay, R., Krayenhoff, M., Eds.; Woodhead Publishing Limited: Cambridge, UK, 2012; pp. 324–363. [Google Scholar]
- Rigassi, V. Compressed Earth Blocks: Manual of Production; CRAterre-EAG, GATE: Eschbourn, Germany, 1985; Volume I, ISBN 3528020792. [Google Scholar]
- Namango, S.S. Development of Cost-Effective Earthen Building Material for Housing Wall Construction: Investigations into the Properties of Compressed Earth Blocks Stabilized with Sisal Vegetable Fibres, Cassava Powder and Cement Compositions. Ph.D. Thesis, Brandenburg Technical University Cottbus, Bungoma, Kenya, 2006. [Google Scholar]
- Kerali, A.G. Durability of Compressed and Cement-Stabilized Building Blocks. Ph.D. Thesis, University of Warwick, Coventry, UK, 2001. [Google Scholar]
- Mahdad, M.; Benidir, A. Hydro-Mechanical Properties and Durability of Earth Blocks: Influence of Different Stabilisers and Compaction Levels. Int. J. Sustain. Build. Technol. Urban Dev. 2018, 9, 44–60. [Google Scholar] [CrossRef]
- Bogas, J.A.; Silva, M.; Glória Gomes, M. Unstabilized and Stabilized Compressed Earth Blocks with Partial Incorporation of Recycled Aggregates. Int. J. Archit. Herit. 2019, 13, 569–584. [Google Scholar] [CrossRef]
- Bogas, J.A. Influence of Water-Repellent Admixtures on the Water-Resistance of Unstabilized and Stabilized Compressed Earth Blocks. Int. J. Archit. Eng. Technol. 2020, 7, 47–61. [Google Scholar] [CrossRef]
- Parracha, J.L.; Silva, A.S.; Cotrim, M.; Faria, P. Mineralogical and Microstructural Characterisation of Rammed Earth and Earthen Mortars from 12th Century Paderne Castle. J. Cult. Herit. 2020, 42, 226–239. [Google Scholar] [CrossRef]
- Jegandan, S.; Liska, M.; Osman, A.A.M.; Al-Tabbaa, A. Sustainable Binders for Soil Stabilisation. Proc. Inst. Civ. Eng. Ground Improv. 2010, 163, 53–61. [Google Scholar] [CrossRef]
- Miraki, H.; Shariatmadari, N.; Ghadir, P.; Jahandari, S.; Tao, Z.; Siddique, R. Clayey Soil Stabilization Using Alkali-Activated Volcanic Ash and Slag. J. Rock Mech. Geotech. Eng. 2022, 14, 576–591. [Google Scholar] [CrossRef]
- Hall, M.; Najim, K.; Keikha Dehdezi, P. Soil Stabilisation and Earth Construction: Materials, Properties and Techniques. In Modern Earth Buildings: Materials, Engineering, Construction and Applications; Hall, M., Lindsay, R., Krayenhoff, M., Eds.; Woodhead Publishing Series: Cambridge, UK, 2012; pp. 212–255. [Google Scholar]
- Walker, P. Standards Australia HB-195: The Australian Earth Building Handbook; SAI Global Limited: Sydney, Australia, 2001. [Google Scholar]
- ARS 680; Compressed Earth Blocks—Code of Practice for the Production of Compressed Earth Blocks. African Organization for Standardization (ARSO): Nairobi, Kenya, 1996.
- Taallah, B.; Guettala, A. The Mechanical and Physical Properties of Compressed Earth Block Stabilized with Lime and Filled with Untreated and Alkali-Treated Date Palm Fibers. Constr. Build. Mater. 2016, 104, 52–62. [Google Scholar] [CrossRef]
- Van Damme, H.; Houben, H. Earth Concrete. Stabilization Revisited. Cem. Concr. Res. 2018, 114, 90–102. [Google Scholar] [CrossRef]
- Ouedraogo, K.A.J.; Aubert, J.E.; Tribout, C.; Escadeillas, G. Is Stabilization of Earth Bricks Using Low Cement or Lime Contents Relevant? Constr. Build. Mater. 2020, 236, 117578. [Google Scholar] [CrossRef]
- Sousa, V.; Bogas, J.A. Comparison of Energy Consumption and Carbon Emissions from Clinker and Recycled Cement Production. J. Clean. Prod. 2021, 306, 127277. [Google Scholar] [CrossRef]
- Tingle, J.; Santoni, R. Stabilization of Clay Soils with Nontraditional Additives. Transp. Res. Rec. J. Transp. Res. Board 2013, 1819, 72–84. [Google Scholar] [CrossRef]
- Millogo, Y.; Aubert, J.E.; Séré, A.D.; Fabbri, A.; Morel, J.C. Earth Blocks Stabilized by Cow-Dung. Mater. Struct. /Mater. Et Constr. 2016, 49, 4583–4594. [Google Scholar] [CrossRef]
- Paa, P.; Yalley, K.; Manu, D. Strength and Durability Properties of Cow Dung Stabilised Earth Brick. Civ. Environ. Res. 2013, 3, 117–125. [Google Scholar]
- Abdulsalam, M.; Abdulkarem, M.; Olumide, E.; Hejazi, F. Effect of Addition of Silica Fume and Oil Palm Fiber on the Engineering Properties of Compressed Earth Block. Civ. Eng. Res. J. 2018, 6, 57–63. [Google Scholar]
- Danso, H.; Adu, S. Characterization of Compressed Earth Blocks Stabilized with Clay Pozzolana. J. Civ. Environ. Eng. 2019, 9, 1–6. [Google Scholar]
- Shui, Z.; Xuan, D.; Wan, H.; Cao, B. Rehydration Reactivity of Recycled Mortar from Concrete Waste Experienced to Thermal Treatment. Constr. Build. Mater. 2008, 22, 1723–1729. [Google Scholar] [CrossRef]
- Carriço, A.; Bogas, J.A.; Guedes, M. Thermoactivated Cementitious Materials—A Review. Constr. Build. Mater. 2020, 250, 118873. [Google Scholar] [CrossRef]
- Real, S.; Carriço, A.; Bogas, J.A.; Guedes, M. Influence of the Treatment Temperature on the Microstructure and Hydration Behavior of Thermoactivated Recycled Cement. Materials 2020, 13, 3937. [Google Scholar] [CrossRef]
- Yu, R.; Shui, Z. Influence of Agglomeration of a Recycled Cement Additive on the Hydration and Microstructure Development of Cement Based Materials. Constr. Build. Mater. 2013, 49, 841–851. [Google Scholar] [CrossRef]
- Bogas, J.A.; Real, S.; Carriço, A.; Abrantes, J.C.C.; Guedes, M. Hydration and Phase Development of Recycled Cement. Cem. Concr. Compos. 2022, 127, 104405. [Google Scholar] [CrossRef]
- Real, S.; Sousa, V.; Meireles, I.; Bogas, J.A.; Carriço, A. Life Cycle Assessment of Thermoactivated Recycled Cement Production. Materials 2022, 15, 6766. [Google Scholar] [CrossRef]
- Wang, J.; Mu, M.; Liu, Y. Recycled Cement. Constr. Build. Mater. 2018, 190, 1124–1132. [Google Scholar] [CrossRef]
- Baldusco, R.; Nobre, T.R.S.; Angulo, S.C.; Quarcioni, V.A.; Cincotto, M.A. Dehydration and Rehydration of Blast Furnace Slag Cement. J. Mater. Civ. Eng. 2019, 31, 04019132. [Google Scholar] [CrossRef]
- Bogas, J.A.; Carriço, A.; Tenza-Abril, A.J. Microstructure of Thermoactivated Recycled Cement Pastes. Cem. Concr. Res. 2020, 138, 106226. [Google Scholar] [CrossRef]
- Carriço, A.; Real, S.; Bogas, J.A.; Costa Pereira, M.F. Mortars with Thermo Activated Recycled Cement: Fresh and Mechanical Characterisation. Constr. Build. Mater. 2020, 256, 119502. [Google Scholar] [CrossRef]
- Carriço, A.; Real, S.; Bogas, J.A. Durability Performance of Thermoactivated Recycled Cement Concrete. Cem. Concr. Compos. 2021, 124, 104270. [Google Scholar] [CrossRef]
- Real, S.; Bogas, J.A.; Carriço, A.; Hu, S. Mechanical Characterisation and Shrinkage of Thermoactivated Recycled Cement Concrete. Appl. Sci. 2021, 11, 2454. [Google Scholar] [CrossRef]
- Bogas, J.A.; Real, S.; Cruz, R.; Azevedo, B. Mechanical Performance and Shrinkage of Compressed Earth Blocks Stabilised with Thermoactivated Recycled Cement. J. Build. Eng. 2023, 79, 107892. [Google Scholar] [CrossRef]
- NP-143 Solos; Determinação Dos Limites de Consistência, Especificação LNEC. Laboratório Nacional de Engenharia Civil (LNEC): Lisbon, Portugal, 1969.
- NP-83 Solos; Determinação Da Densidade Das Partículas, Especificação LNEC. Laboratório Nacional de Engenharia Civil (LNEC): Lisbon, Portugal, 1970.
- LNEC E 239 Solos; Análise Granulométrica Por Peneiração Húmida, Especificação LNEC. Laboratório Nacional de Engenharia Civil (LNEC): Lisbon, Portugal, 1970.
- ASTM D698; Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 Ft-Lbf/Ft3 (600 KN-m/M3)). American Society for Testing & Materials (ASTM): West Conshohocken, PA, USA, 2021.
- XP P 13-901; Compressed Earth Blocks for Walls and Partitions. Definitions. Specifications. Test Methods. Delivery Acceptance Conditions. Association Française de Normalisation (AFNOR): Paris, France, 2001.
- ARS 1333; Compressed Stabilized Earth Blocks—Requirements, Production and Construction. African Organization for Standardization (ARSO): Nairobi, Kenya, 2018.
- Bahar, R.; Benazzoug, M.; Kenai, S. Performance of Compacted Cement-Stabilised Soil. Cem. Concr. Compos. 2004, 26, 811–820. [Google Scholar] [CrossRef]
- Doat, P.; Hays, A.; Houben, H.; Matuk, S.; Vitox, F. Construire En Terre; Par La CRATerre: Paris, France, 1979. [Google Scholar]
- Real, S.; Bogas, J.A.; Cruz, R.; Gomes, M.G. Eco-Recycled Cement’s Effect on the Microstructure and Hygroscopic Behaviour of Compressed Stabilised Earth Blocks. J. Build. Eng. 2024, 95, 110227. [Google Scholar] [CrossRef]
- Carriço, A.; Bogas, J.A.; Real, S.; Pereira, M.F.C. Shrinkage and Sorptivity of Mortars with Thermoactivated Recycled Cement. Constr. Build. Mater. 2022, 333, 127392. [Google Scholar] [CrossRef]
- EN 196-2; Method of Testing Cement—Part 2: Chemical Analysis of Cement. European Committee for Standardization: Brussels, Belgium, 2013.
- EN 196-1; Methods of Testing Cement—Part 1: Determination of Strength. European Committee for Standardization (CEN): Brussels, Belgium, 2016.
- EN 451-1; Method of Testing Fly Ash—Part 1: Determination of Free Calcium Oxide Content. European Committee for Standardization (CEN): Brussels, Belgium, 2017.
- EN 196-3; Methods of Testing Cement—Part 3: Determination of Setting Times and Soundness. European Committee for Standardization (CEN): Brussels, Belgium, 2016.
- Shui, Z.; Xuan, D.; Chen, W.; Yu, R.; Zhang, R. Cementitious Characteristics of Hydrated Cement Paste Subjected to Various Dehydration Temperatures. Constr. Build. Mater. 2009, 23, 531–537. [Google Scholar] [CrossRef]
- Xuan, D.X.; Shui, Z.H. Rehydration Activity of Hydrated Cement Paste Exposed to High Temperature. Fire Mater. 2011, 35, 481–490. [Google Scholar] [CrossRef]
- Bogas, J.A.; Carriço, A.; Pereira, M.F.C. Mechanical Characterization of Thermal Activated Low-Carbon Recycled Cement Mortars. J. Clean. Prod. 2019, 218, 377–389. [Google Scholar] [CrossRef]
- NZS 4298; Materials and Workmanship for Earth Buildings—Incorporating Amendment No. 1. New Zealand Standards: Wellington, New Zealand, 1998.
- EN 772-13; Methods of Test for Masonry Units—Part 13: Determination of Net and Gross Dry Density of Masonry Units (except for Natural Stone). European Committee for Standardization (CEN): Brussels, Belgium, 2000.
- Neville, A.M. Properties of Concrete; Pearson Education Limited: London, UK, 1995; Volume 5. [Google Scholar]
- EN 772-1; Methods of Test for Masonry Units—Part 1: Determination of Compressive Strength. European Committee for Standardization (CEN): Brussels, Belgium, 2011.
- Heathcote, K.A. Durability of Earthwall Buildings. Constr. Build. Mater. 1995, 9, 185–189. [Google Scholar] [CrossRef]
- Kinuthia, J.M. The Durability of Compressed Earth-Based Masonry Blocks. In Eco-Efficient Masonry Bricks and Blocks: Design, Properties and Durability; Pacheco-Torgal, F., Lourenço, P., Labrincha, J., Chindaprisirt, P., Kumar, S., Eds.; Woodhead Publishing: Cambridge, UK, 2015; pp. 393–421. [Google Scholar]
- LNEC E-394 Betões; Determinação Da Absorção de Água Por Imersão, Especificação LNEC. Laboratório Nacional de Engenharia Civil (LNEC): Lisbon, Portugal, 1993.
- NBR 8492; Tijolo de Solo-Cimento—Análise Dimensional, Determinação Da Resistência à Compressão e Da Absorção de Água—Método de Ensaio. Associação Brasileira de Normas Técnicas (ABNT): Rio de Janeiro, Brazil, 2012.
- NTC 5324; Bloques de Suelo Cemento Para Muros y Divisiones. Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC): Bogotá, Colombia, 2004.
- EN 772-11; Methods of Test for Masonry Units—Part 11: Determination of Water Absorption of Aggregate Concrete, Autoclaved Aerated Concrete, Manufactured Stone and Natural Stone Masonry Units Due to Capillary Action and the Initial Rate of Water Absorption of Clay Masonry Units. European Committee for Standardization (CEN): Brussels, Belgium, 2011.
- EN 16302; Conservation of Cultural Heritage—Test Methods—Measurement of Water Absorption by Pipe Method. European Committee for Standardization (CEN): Brussels, Belgium, 2013.
- Paulmann, K.; Molin, C. On-Site Test Methods. In Performance Criteria for Concrete Durability; Kropp, J., Hilsdorf, H., Eds.; CRC Press: Boca Ratón, FL, USA, 1995; pp. 164–177. [Google Scholar]
- Lee, Y.; Kim, P.; Kim, H.; Seoung, D. Comparative Compressibility of Smectite Group under Anhydrous and Hydrous Environments. Materials 2020, 13, 3784. [Google Scholar] [CrossRef]
- Reddi, L.N.; Jain, A.K.; Yun, H.B. Soil Materials for Earth Construction: Properties, Classification and Suitability Testing. In Modern Earth Buildings: Materials, Engineering, Constructions and Applications; Hall, M., Lindsay, R., Krayenhoff, M., Eds.; Woodhead Publishing: Cambridge, UK, 2012; pp. 155–171. ISBN 9780857090263. [Google Scholar]
- Snellings, R. X-Ray Powder Diffraction Applied to Cement. In A Practical Guide to Microstructural Analysis of Cementitious Materials; Scrivener, K., Snellings, R., Lothenback, B., Eds.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Alarcon-Ruiz, L.; Platret, G.; Massieu, E.; Ehrlacher, A. The Use of Thermal Analysis in Assessing the Effect of Temperature on a Cement Paste. Cem. Concr. Res. 2005, 35, 609–613. [Google Scholar] [CrossRef]
- Alonso, C.; Fernandez, L. Dehydration and Rehydration Processes of Cement Paste Exposed to High Temperature Environments. J. Mater. Sci. 2014, 39, 3015–3024. [Google Scholar] [CrossRef]
- Heidbrink, J.L.; Li, J.; Pan, W.P.; Gooding, J.L.; Aubuchon, S.; Foreman, J.; Lundgren, C.J. Distinction of Nontronite from Palagonite by Thermal Analysis and Evolved-Gas Analysis: Application to Mars Surface Exploration. Thermochim. Acta 1996, 284, 241–251. [Google Scholar] [CrossRef]
- Ding, Z.; Frost, R.L. Controlled Rate Thermal Analysis of Nontronite. Thermochim. Acta 2002, 389, 185–193. [Google Scholar] [CrossRef]
- Mansour, M.B.; Jelidi, A.; Cherif, A.S.; Jabrallah, S. Ben Optimizing Thermal and Mechanical Performance of Compressed Earth Blocks (CEB). Constr. Build. Mater. 2016, 104, 44–51. [Google Scholar] [CrossRef]
- Krosnowski, A.D. A Proposed Best Practice Method of Defining a Standard of Care for Stabilized Compressed Earthen Block Production. Master’s Thesis, University of Colorado, Boulder, CO, USA, 2011. [Google Scholar]
- Riza, F.V.; Rahman, I.A. The Properties of Compressed Earth-Based (CEB) Masonry Blocks. In Eco-efficient Masonry Bricks and Blocks: Design, Properties and Durability; Pacheco-Torgal, F., Lourenço, P.B., Labrincha, J.A., Kumar, S., Chindaprasirt, P., Eds.; Woodhead Publishing: Cambridge, UK, 2015; pp. 379–392. ISBN 9781782423188. [Google Scholar]
- Roussel, N.; Geiker, M.R.; Dufour, F.; Thrane, L.N.; Szabo, P. Computational Modeling of Concrete Flow: General Overview. Cem. Concr. Res. 2007, 37, 1298–1307. [Google Scholar] [CrossRef]
- Powers, T.C. Structure and Physical Properties of Hardened Cement Paste. J. Am. Ceram. Soc. 1958, 41, 1–6. [Google Scholar] [CrossRef]
- Minke, G. Building with Earth- 30 Years of Research and Development at the University of Kassel. In Proceedings of the International Conference Central Europe towards Sustainable Building, Prague, September 2007; In-House publishing: Rotterdam, The Netherlands, 2007; pp. 89–98. [Google Scholar]
- Exelbirt, J. Characterizing Compressed Earth Bricks Based on Hygrothermal Aging and Wind-Driven Rain Erosion. Master’s Thesis, University of Florida, Gainesville, FL, USA, 2011. [Google Scholar]
- Elenga, R.G.; Mabiala, B.; Ahouet, L.; Goma-Maniongui, J.; Dirras, G.F.; Elenga, R.G.; Mabiala, B.; Ahouet, L.; Goma-Maniongui, J.; Dirras, G.F. Characterization of Clayey Soils from Congo and Physical Properties of Their Compressed Earth Blocks Reinforced with Post-Consumer Plastic Wastes. Geomaterials 2011, 01, 88–94. [Google Scholar] [CrossRef]
- Cid-Falceto, J.; Mazarrón, F.R.; Cañas, I. Assessment of Compressed Earth Blocks Made in Spain: International Durability Tests. Constr. Build. Mater. 2012, 37, 738–745. [Google Scholar] [CrossRef]
Parameters | Standard | PC | RC | |
---|---|---|---|---|
Density (g/cm3) | a | 3.07 ± 0.3 | 3.00 | |
Compressive strength of reference mortar (MPa) | 2 days | EN 196-1 [52] | 16.80 ± 1.2 | - |
28 days | 57.00 ± 3.8 | - | ||
SiO2 + Al2O3 + Fe2O3 (%) | EN 196-2 [51] | 19.64 + 5.34 + 3.05 | 19.14 + 5.13 + 3.00 | |
CaO + MgO (%) | 62.80 + 1.80 | 60.79 + 1.77 | ||
Free CaO | EN 451-1 [53] | 0.70 | 13.94 | |
Water demand (w/b) | EN 196-3 [54] | 0.31 | 0.73 | |
Setting time (min) | Initial | EN 196-3 [54] | 170 | 290 |
Final | 280 | 385 |
Mixture | Soil a (%) | PC b (%) | RC b (%) | Water b (%) | w/b c |
---|---|---|---|---|---|
PC10 | 90 | 10 | - | 15.0 | 1.45 |
RC10 | 90 | - | 10 | 16.5 | 1.60 |
PC5 | 95 | 5 | - | 15.2 | 2.93 |
RC5 | 95 | - | 5 | 16.2 | 3.13 |
RC2PC8 | 90 | 2 | 8 | 15.0 | 1.45 |
RC5PC5 | 90 | 5 | 5 | 15.5 | 1.50 |
UCEB | 100 | - | - | 14.4 | - |
Mixture | MPC (kg/m3) | MRC (kg/m3) | MS (kg/m3) | ρf (kg/m3) | ρlab,28d (kg/m3) | VV (%) | PT (%) | fc,28d (MPa) | CVfc,28d (%) | fc,un,28d (MPa) |
---|---|---|---|---|---|---|---|---|---|---|
PC10 | 179 | - | 1552 | 1991 | 1864 | 10.7 | 34.2 | 5.92 | 4.5 | 3.30 |
RC10 | - | 166 | 1439 | 1871 | 1729 | 14.6 | 39.0 | 4.44 | 6 | 2.47 |
PC5 | 88 | - | 1605 | 1950 | 1793 | 12.0 | 36.5 | 3.34 | 8.8 | 1.86 |
RC5 | - | 84 | 1532 | 1879 | 1718 | 14.2 | 39.3 | 2.45 | 4.8 | 1.36 |
RC2PC8 | 141 | 35 | 1523 | 1954 | 1797 | 12.4 | 35.4 | 5.12 | 5.6 | 2.85 |
RC5PC5 | 86 | 86 | 1482 | 1909 | 1782 | 13.9 | 37.1 | 4.99 | 2.3 | 2.78 |
UCEB | - | - | 1771 | 2026 | 1815 | 8.9 | 34.4 | 2.33 | 8.3 | 1.30 |
Mixture | Pressure (bar) | Test Time (min) | DE (mm) | Erosion Rate (mm/hour) | DP (mm) |
---|---|---|---|---|---|
PC10 | 2.5 | 60 | - | <1 | 38 |
RC5PC5 | 2.5 | 60 | - | <1 | 36 |
RC10 | 2.5 | 60 | - | <1 | 39 |
UCEB | 0.5 | 7 | 60 | 514 | Fully eroded |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cruz, R.; Bogas, J.A.; Balboa, A.; Faria, P. Water Resistance of Compressed Earth Blocks Stabilised with Thermoactivated Recycled Cement. Materials 2024, 17, 5617. https://doi.org/10.3390/ma17225617
Cruz R, Bogas JA, Balboa A, Faria P. Water Resistance of Compressed Earth Blocks Stabilised with Thermoactivated Recycled Cement. Materials. 2024; 17(22):5617. https://doi.org/10.3390/ma17225617
Chicago/Turabian StyleCruz, Ricardo, José Alexandre Bogas, Andrea Balboa, and Paulina Faria. 2024. "Water Resistance of Compressed Earth Blocks Stabilised with Thermoactivated Recycled Cement" Materials 17, no. 22: 5617. https://doi.org/10.3390/ma17225617
APA StyleCruz, R., Bogas, J. A., Balboa, A., & Faria, P. (2024). Water Resistance of Compressed Earth Blocks Stabilised with Thermoactivated Recycled Cement. Materials, 17(22), 5617. https://doi.org/10.3390/ma17225617