Effect of Precipitation-Free Zone on Fatigue Properties in Al-7.02Mg-1.98Zn Alloys: Crystal Plasticity Finite Element Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Three Types of Polycrystalline Geometry Models
2.2. Material Modeling
2.3. Material Parameters
2.4. Simulations
3. Results
3.1. Uniaxial Tension
3.2. Cyclic Loading
4. Discussion
5. Conclusions
- (1)
- The presence of PFZ significantly reduces the yield strength of the alloy and further promotes stress concentration, especially in the PFZ;
- (2)
- In the PFZ separation model, the stress concentration is further enhanced by the increase in the orientation difference between the PFZ and the grain interior, thereby increasing the driving force for fatigue crack initiation;
- (3)
- Both stress and FIP converge along 45° from the loading direction, especially in the PFZ, indicating that age-strengthened aluminum alloys are characterized by cracking along grain boundaries;
- (4)
- PFZ is the key structure that undermines the fatigue performance of age-strengthened aluminum alloys. The fatigue crack driving force of the model including PFZ is more than 1.5 times higher than that of the model without PFZ, and the maximum FIP increases with increasing RF. Therefore, the fatigue life of the model without PFZ is much higher than that of the model with PFZ, which explains the lower fatigue performance of age-strengthened aluminum alloys than that of non-age-strengthened aluminum alloys.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raugei, M.; Morrey, D.; Hutchinson, A.; Winfield, P. A Coherent Life Cycle Assessment of a Range of Lightweighting Strategies for Compact Vehicles. J. Clean. Prod. 2015, 108, 1168–1176. [Google Scholar] [CrossRef]
- Zhang, J.; Song, B.; Wei, Q.; Bourell, D.; Shi, Y. A Review of Selective Laser Melting of Aluminum Alloys: Processing, Microstructure, Property and Developing Trends. J. Mater. Sci. Technol. 2019, 35, 270–284. [Google Scholar] [CrossRef]
- Dumitraschkewitz, P.; Gerstl, S.S.A.; Stephenson, L.T.; Uggowitzer, P.J.; Pogatscher, S. Clustering in Age-Hardenable Aluminum Alloys. Adv. Eng. Mater. 2018, 20, 1800255. [Google Scholar] [CrossRef]
- Ravi, K.R.; Pillai, R.M.; Amaranathan, K.R.; Pai, B.C.; Chakraborty, M. Fluidity of Aluminum Alloys and Composites: A Review. J. Alloys Compd. 2008, 456, 201–210. [Google Scholar] [CrossRef]
- Bakare, F.; Jiang, L.; Langan, T.; Weiss, M.; Dorin, T. Impact of Dispersoids’ Distribution on Portevin-Le-Chatelier Effect and Surface Quality in Al–Mg-Sc-Zr Alloys. Mater. Sci. Eng. A 2023, 875, 145108. [Google Scholar] [CrossRef]
- Bakare, F.; Schieren, L.; Rouxel, B.; Jiang, L.; Langan, T.; Kupke, A.; Weiss, M.; Dorin, T. The Impact of L12 Dispersoids and Strain Rate on the Portevin-Le-Chatelier Effect and Mechanical Properties of Al–Mg Alloys. Mater. Sci. Eng. A 2021, 811, 141040. [Google Scholar] [CrossRef]
- Ding, Q.; Zhang, D.; Pan, Y.; Hou, S.; Zhuang, L.; Zhang, J. Strengthening Mechanism of Age-Hardenable Al–xMg–3Zn Alloys. Mater. Sci. Technol. 2019, 35, 1071–1080. [Google Scholar] [CrossRef]
- Hou, S.; Liu, P.; Zhang, D.; Zhang, J.; Zhuang, L. Precipitation Hardening Behavior and Microstructure Evolution of Al–5.1 Mg–0.15Cu Alloy with 3.0Zn (Wt%) Addition. J. Mater. Sci. 2018, 53, 3846–3861. [Google Scholar] [CrossRef]
- Hou, S.; Zhang, D.; Pan, Y.; Ding, Q.; Long, W.; Zhang, J.; Zhuang, L. Dependence of Microstructure, Mechanical Properties, and Inter-Granular Corrosion Behavior of Al-5.1Mg-3.0Zn-0.15Cu Alloys with High Temperature Pre-Treatment. Mater. Charact. 2020, 168, 110512. [Google Scholar] [CrossRef]
- Hou, S.; Zhang, D.; Ding, Q.; Zhang, J.; Zhuang, L. Solute Clustering and Precipitation of Al-5.1Mg-0.15Cu-xZn Alloy. Mater. Sci. Eng. A 2019, 759, 465–478. [Google Scholar] [CrossRef]
- Geng, Y.; Zhang, D.; Zhang, J.; Zhuang, L. On the Suppression of Lüders Elongation in High-Strength Cu/Zn Modified 5xxx Series Aluminum Alloy. J. Alloys Compd. 2020, 834, 155138. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, X.; Pan, Y.; Hou, S.; Zhang, J.; Zhuang, L.; Zhou, L. Friction Stir Welding of Novel T-Phase Strengthened Zn-Modified Al–Mg Alloy. J. Mater. Sci. 2021, 56, 5283–5295. [Google Scholar] [CrossRef]
- Miller, K.J. Metal Fatigue—Past, Current and Future. Proc. Inst. Mech. Eng. Part. C Mech. Eng. Sci. 1991, 205, 291–304. [Google Scholar] [CrossRef]
- McDowell, D.L.; Dunne, F.P.E. Microstructure-Sensitive Computational Modeling of Fatigue Crack Formation. Int. J. Fatigue 2010, 32, 1521–1542. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhu, Y.; Gao, X.; Wu, Y.; Hutchinson, C. Training High-Strength Aluminum Alloys to Withstand Fatigue. Nat. Commun. 2020, 11, 5198. [Google Scholar] [CrossRef]
- Ma, Q.; Zhang, D.; Zhuang, L.; Zhang, J. Intergranular Corrosion Resistance of Zn Modified 5××× Series Al Alloy during Retrogression and Re-Aging Treatment. Mater. Charact. 2018, 144, 264–273. [Google Scholar] [CrossRef]
- Manonukul, A.; Dunne, F.P.E. High- and Low-Cycle Fatigue Crack Initiation Using Polycrystal Plasticity. Proc. R. Soc. Lond. A 2004, 460, 1881–1903. [Google Scholar] [CrossRef]
- Cruzado, A.; Lucarini, S.; LLorca, J.; Segurado, J. Crystal Plasticity Simulation of the Effect of Grain Size on the Fatigue Behavior of Polycrystalline Inconel 718. Int. J. Fatigue 2018, 113, 236–245. [Google Scholar] [CrossRef]
- Korsunsky, A.; Dini, D.; Dunne, F.; Walsh, M. Comparative Assessment of Dissipated Energy and Other Fatigue Criteria☆. Int. J. Fatigue 2007, 29, 1990–1995. [Google Scholar] [CrossRef]
- Skelton, R. Energy Criteria and Cumulative Damage during Fatigue Crack Growth. Int. J. Fatigue 1998, 20, 641–649. [Google Scholar] [CrossRef]
- Yuan, G.-J. Low-Cycle Fatigue Life Prediction of a Polycrystalline Nickel-Base Superalloy Using Crystal Plasticity Modelling Approach. J. Mater. Sci. Technol. 2019, 38, 28–38. [Google Scholar] [CrossRef]
- Chen, X.; Zheng, X.; He, M.; Liu, Y.; Mao, H.; Li, X.; Yan, H.; Kong, Y.; Li, L.; Du, Y. Effect of Grain Orientation Distribution on the Mechanical Properties of Al-7.02Mg-1.78Zn Alloys. Multidiscip. Model. Mater. Struct. 2024, 20, 746–759. [Google Scholar] [CrossRef]
- Meng, C.; Zhang, D.; Zhuang, L.; Zhang, J. Correlations between Stress Corrosion Cracking, Grain Boundary Precipitates and Zn Content of Al–Mg–Zn Alloys. J. Alloys Compd. 2016, 655, 178–187. [Google Scholar] [CrossRef]
- Ding, Q.; Zhang, D.; Zuo, J.; Hou, S.; Zhuang, L.; Zhang, J. The Effect of Grain Boundary Character Evolution on the Intergranular Corrosion Behavior of Advanced Al-Mg-3wt%Zn Alloy with Mg Variation. Mater. Charact. 2018, 146, 47–54. [Google Scholar] [CrossRef]
- Fourmeau, M.; Marioara, C.D.; Børvik, T.; Benallal, A.; Hopperstad, O.S. A Study of the Influence of Precipitate-Free Zones on the Strain Localization and Failure of the Aluminium Alloy AA7075-T651. Philos. Mag. 2015, 95, 3278–3304. [Google Scholar] [CrossRef]
- Huang, Y.; Sun, P.; Sun, L.; Li, Y.; Zheng, X.; Li, X.; Yan, H.; Li, B.; Liu, Y.; Du, Y. Effect of Zn/Mg Ratio on Aging Precipitates and Mechanical Property of High Mg Content Al-Mg-Zn Alloys with Sc and Zr Additions. J. Alloys Compd. 2024, 976, 173368. [Google Scholar] [CrossRef]
- Arani, M.M.; Ramesh, N.S.; Wang, X.; Parson, N.; Li, M.; Poole, W.J. The Localization of Plastic Deformation in the Precipitate Free Zone of an Al-Mg-Si-Mn Alloy. Acta Mater. 2022, 231, 117872. [Google Scholar] [CrossRef]
- Quey, R.; Dawson, P.R.; Barbe, F. Large-Scale 3D Random Polycrystals for the Finite Element Method: Generation, Meshing and Remeshing. Comput. Methods Appl. Mech. Eng. 2011, 200, 1729–1745. [Google Scholar] [CrossRef]
- Huang, Y. A User-Material Subroutine Incorporating Single Crystal Plasticity in the Abaqus Finite Element Program; Harvard University: Cambridge, UK, 1991. [Google Scholar]
- Peirce, D.; Asaro, R.J.; Needleman, A. Material Rate Dependence and Localized Deformation in Crystalline Solids. Acta Metall. 1983, 31, 1951–1976. [Google Scholar] [CrossRef]
- Zheng, X.; Kong, Y.; Chang, T.; Liao, X.; Ma, Y.; Du, Y. High-Throughput Computing Assisted by Knowledge Graph to Study the Correlation between Microstructure and Mechanical Properties of 6XXX Aluminum Alloy. Materials 2022, 15, 5296. [Google Scholar] [CrossRef]
- Khadyko, M.; Myhr, O.R.; Dumoulin, S.; Hopperstad, O.S. A Microstructure-Based Yield Stress and Work-Hardening Model for Textured 6xxx Aluminium Alloys. Philos. Mag. 2016, 96, 1047–1072. [Google Scholar] [CrossRef]
- Zhang, K.; Holmedal, B.; Mánik, T.; Saai, A. Assessment of Advanced Taylor Models, the Taylor Factor and Yield-Surface Exponent for FCC Metals. Int. J. Plast. 2019, 114, 144–160. [Google Scholar] [CrossRef]
- Efthymiadis, P.; Pinna, C.; Yates, J.R. Fatigue Crack Initiation in AA2024: A Coupled Micromechanical Testing and Crystal Plasticity Study. Fatigue Fract. Eng. Mater. Struct. 2019, 42, 321–338. [Google Scholar] [CrossRef]
- Lee, W.B.; Chan, K.C. A Criterion for the Prediction of Shear Band Angles in F.C.C. Metals. Acta Metall. Mater. 1991, 39, 411–417. [Google Scholar] [CrossRef]
- Zhu, Q.; Chen, G.; Wang, C.; Qin, H.; Zhang, P. Tensile Deformation and Fracture Behaviors of a Nickel-Based Superalloy via In Situ Digital Image Correlation and Synchrotron Radiation X-Ray Tomography. Materials 2019, 12, 2461. [Google Scholar] [CrossRef]
- Zhao, Q.; Abdel Wahab, M.; Ling, Y.; Liu, Z. Grain-Orientation Induced Stress Formation in AA2024 Monocrystal and Bicrystal Using Crystal Plasticity Finite Element Method. Mater. Des. 2021, 206, 109794. [Google Scholar] [CrossRef]
- Zhu, Q.; Cao, L.; Liu, Y.; Liu, S.; Wu, X. Intergranular Micro-Deformation Behavior of a Medium Strength 7xxx Aluminum Alloy. J. Mater. Res. Technol. 2021, 12, 471–477. [Google Scholar] [CrossRef]
- Guo, C.; Xin, R.; Xu, J.; Song, B.; Liu, Q. Strain Compatibility Effect on the Variant Selection of Connected Twins in Magnesium. Mater. Des. 2015, 76, 71–76. [Google Scholar] [CrossRef]
- Ludtka, G.M.; Laughlin, D.E. The Influence of Microstructure and Strength on the Fracture Mode and Toughness of 7XXX Series Aluminum Alloys. Met. Trans. A 1982, 13, 411–425. [Google Scholar] [CrossRef]
- Kawabata, T.; Izumi, O. The Relationship between Fracture Toughness and Transgranular Fracture in an Al-6.0% Zn-2.5% Mg Alloy. Acta Metall. 1977, 25, 505–512. [Google Scholar] [CrossRef]
Elastic Parameters (GPa) | ||||
102.8 | 61.4 | 27.7 | ||
Plastic Parameters | ||||
(s−1) | (MPa) | (MPa) | ||
0.001 | 50 | 1.4 | 65 | 350 |
(MPa) | (MPa) | (MPa) | (MPa) | |
115.0 | 130.0 | 16.6 | 31.6 | 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Zheng, X.; Pan, M.; Liu, Y.; Kong, Y.; Hartmaier, A.; Li, L.; Du, Y. Effect of Precipitation-Free Zone on Fatigue Properties in Al-7.02Mg-1.98Zn Alloys: Crystal Plasticity Finite Element Analysis. Materials 2024, 17, 5623. https://doi.org/10.3390/ma17225623
Chen X, Zheng X, Pan M, Liu Y, Kong Y, Hartmaier A, Li L, Du Y. Effect of Precipitation-Free Zone on Fatigue Properties in Al-7.02Mg-1.98Zn Alloys: Crystal Plasticity Finite Element Analysis. Materials. 2024; 17(22):5623. https://doi.org/10.3390/ma17225623
Chicago/Turabian StyleChen, Xin, Xiaoyu Zheng, Meichen Pan, Yuling Liu, Yi Kong, Alexander Hartmaier, Liya Li, and Yong Du. 2024. "Effect of Precipitation-Free Zone on Fatigue Properties in Al-7.02Mg-1.98Zn Alloys: Crystal Plasticity Finite Element Analysis" Materials 17, no. 22: 5623. https://doi.org/10.3390/ma17225623
APA StyleChen, X., Zheng, X., Pan, M., Liu, Y., Kong, Y., Hartmaier, A., Li, L., & Du, Y. (2024). Effect of Precipitation-Free Zone on Fatigue Properties in Al-7.02Mg-1.98Zn Alloys: Crystal Plasticity Finite Element Analysis. Materials, 17(22), 5623. https://doi.org/10.3390/ma17225623