Vitrified Clay for the Production of a Green Sustainable Ultra-High-Performance Fiber-Reinforced Concrete
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Optimization of Mixture Proportions
2.3. Test Methods
2.3.1. Characterization of Cementitious Materials, Fine Aggregates, and Powders
2.3.2. Fresh State Properties of UHPCs
2.3.3. Mechanical and Elastic Properties in the Hardened State
- = Stress in the limit of proportionality, N/mm2.
- = Residual flexural tensile strength, corresponding with CMOD = CMODj or N/mm2, where the corresponding CMODs are 1 = 0.5 mm, 2 = 1.5 mm, 3 = 2.5 mm and 4 = 3.5 mm.= Corresponding load for the LOP, N.
- = Corresponding load for CMOD = CMODj or δ = δj (j = 1, 2, 3, 4), N.
- = Length of span, mm.
- = Specimen length, mm.
- = Distance between the notch tip and the top of the sample, mm.
3. Results and Discussion
3.1. Fresh State Properties
3.2. Mechanical and Elastic Properties of UHPC in the Hardened State
3.2.1. Compressive Strength
3.2.2. Static Modulus of Elasticity at 91 Days
3.2.3. Modulus of Rupture, Post-Cracking Residual Strengths, and Toughness Indexes
Post-Cracking Behavior
Proportional Limits and First Crack Stresses
Flexural Toughness Indexes
3.3. Estimation of Embodied CO2
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Applications of Cement-Portland Cement Association. Available online: https://www.cement.org/cement-concrete/applications-of-cement/ (accessed on 1 September 2024).
- Ghafari, E.; Ghahari, S.A.; Costa, H.; Júlio, E.; Portugal, A.; Durães, L. Effect of supplementary cementitious materials on autogenous shrinkage of ultra-high-performance concrete. Constr. Build. Mater. 2016, 127, 43–48. [Google Scholar] [CrossRef]
- Burroughs, J.F.; Shannon, J.; Rushing, T.S.; Yi, K.; Gutierrez, Q.B.; Harrelson, D.W. Potential of finely ground limestone powder to benefit ultra-high-performance concrete mixtures. Constr. Build. Mater. 2017, 141, 335–342. [Google Scholar] [CrossRef]
- Alsalman, A.; Dang, C.N.; Hale, W.M. Development of ultra-high-performance concrete with locally available materials. Constr. Build. Mater. 2017, 133, 135–145. [Google Scholar] [CrossRef]
- Randl, N.; Steiner, T.; Ofner, S.; Baumgartner, E.; Mészöly, T. Development of UHPC mixtures from an ecological point of view. Constr. Build. Mater. 2014, 67, 373–378. [Google Scholar] [CrossRef]
- Wu, Z.; Shi, C.; He, W. Comparative study on flexural properties of ultra-high-performance concrete with supplementary cementitious materials under different curing regimes. Constr. Build. Mater. 2017, 136, 307–313. [Google Scholar] [CrossRef]
- Alsalman, A.; Dang, C.N.; Prinz, G.S.; Hale, W.M. Evaluation of modulus of elasticity of ultra-high-performance concrete. Constr. Build. Mater. 2017, 153, 918–928. [Google Scholar] [CrossRef]
- Reda, M.M.; Shrive, N.G.; Gillott, J.E. Microstructural investigation of innovative UHPC. Cem. Concr. Res. 1999, 29, 323–329. [Google Scholar] [CrossRef]
- Yu, R.; Spiesz, P.; Brouwers, H.J.H. Mix design and properties assessment of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC). Cem. Concr. Res. 2014, 56, 29–39. [Google Scholar] [CrossRef]
- Du, J.; Meng, W.; Khayat, K.H.; Bao, Y.; Guo, P.; Lyu, Z.; Abu-Obeidah, A.; Nassif, H.; Wang, H. New development of ultra-high-performance concrete (UHPC). Compos. B Eng. 2021, 224, 109220. [Google Scholar] [CrossRef]
- Soliman, N.A.; Tagnit-Hamou, A. Using glass sand as an alternative for quartz sand in UHPC. Constr. Build. Mater. 2017, 145, 243–252. [Google Scholar] [CrossRef]
- Zareei, S.A.; Ameri, F.; Bahrami, N.; Shoaei, P.; Musaeei, H.R.; Nurian, F. Green high strength concrete containing recycled waste ceramic aggregates and waste carpet fibers: Mechanical, durability, and microstructural properties. J. Build. Eng. 2019, 26, 100914. [Google Scholar] [CrossRef]
- Park, S.; Wu, S.; Liu, Z.; Pyo, S. The Role of Supplementary Cementitious Materials (SCMs) in Ultra High Performance Concrete (UHPC): A Review. Materials 2021, 14, 1472. [Google Scholar] [CrossRef] [PubMed]
- Kannan, D.M.; Aboubakr, S.H.; EL-Dieb, A.S.; Taha, M.M.R. High performance concrete incorporating ceramic waste powder as large partial replacement of Portland cement. Constr. Build. Mater. 2017, 144, 35–41. [Google Scholar] [CrossRef]
- Lasseuguette, E.; Burns, S.; Simmons, D.; Francis, E.; Chai, H.; Koutsos, V.; Huang, Y. Chemical, microstructural and mechanical properties of ceramic waste blended cementitious systems. J. Clean. Prod. 2019, 211, 1228–1238. [Google Scholar] [CrossRef]
- Le, H.T.; Ludwig, H.M. Effect of rice husk ash and other mineral admixtures on properties of self-compacting high performance concrete. Mater. Des. 2016, 89, 156–166. [Google Scholar] [CrossRef]
- Tam, V.W.Y.; Soomro, M.; Evangelista, A.C.J. A review of recycled aggregate in concrete applications (2000–2017). Constr. Build. Mater. 2018, 172, 272–292. [Google Scholar] [CrossRef]
- Mousavi, S.S.; Bhgaraju, C.; Ouellet-Plamondon, C. Clay as a Sustainable Binder for concrete—A review. Constr. Mater. 2021, 1, 134–168. [Google Scholar] [CrossRef]
- Hou, W.M.; Chang, P.K.; Hwang, C.L. A study on anticorrosion effect in high-performance concrete by the pozzolanic reaction of slag. Cem. Concr. Res. 2004, 34, 615–622. [Google Scholar] [CrossRef]
- Jaskulski, R.; Józwiak-Niedzwiedzka, D.; Yakymechko, Y. Cailcined clay as supplementary cementitious material. Materials 2020, 13, 4734. [Google Scholar] [CrossRef]
- Scrivener, K.; Martirena, F.; Bishnoi, S.; Maity, S. Calcined clay limestone cements (LC3). Cem. Concr. Res. 2018, 114, 49–56. [Google Scholar] [CrossRef]
- Halicka, A.; Ogrodnik, P.; Zegardlo, B. Using ceramic sanitary ware waste as concrete aggregate. Constr. Build. Mater. 2013, 48, 295–305. [Google Scholar] [CrossRef]
- Subaşı, S.; Öztürk, H.; Emiroğlu, M. Utilizing of waste ceramic powders as filler material in self-consolidating concrete. Constr. Build. Mater. 2017, 149, 567–574. [Google Scholar] [CrossRef]
- Ding, M.; Yu, R.; Feng, Y.; Wang, S.; Zhou, F.; Shui, Z.; Gao, X.; He, Y.; Chen, L. Possibility and advantages of producing an ultra-high performance concrete (UHPC) with ultra-low cement content. Constr. Build. Mater. 2021, 273, 122023. [Google Scholar] [CrossRef]
- Hernández-Carrillo, G.; Durán-Herrera, A.; Tagnit-Hamou, A. Effect of Limestone and Quartz Fillers in UHPC with Calcined Clay. Materials 2022, 15, 7711. [Google Scholar] [CrossRef] [PubMed]
- Kravanja, G.; Mumtaz, A.R.; Kravanja, S. A Comprehensive Review of the Advances, Manufacturing, Properties, Innovations, Environmental Impact and Applications of Ultra-High-Performance Concrete (UHPC). Buildings 2024, 14, 382. [Google Scholar] [CrossRef]
- Diagnostico Básico Para la Gestión Integral de los Residuos. Available online: www.gob.mx/inecc (accessed on 1 September 2024).
- ASTM C150/C150M-22; Standard Specification for Portland Cement. ASTM International: West Conshohocken, PA, USA, 2022.
- ASTM C1240-20; Standard Specification for Silica Fume Used in Cementitious Mixtures. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM C33/C33M-24; Standard Specification for Concrete Aggregates. ASTM International: West Conshohocken, PA, USA, 2024.
- ASTM C311/C311M-24; Standard Test Methods for Sampling and Testing Coal Ash or Natural Pozzolans for Use in Concrete. ASTM International: West Conshohocken, PA, USA, 2024.
- ASTM C1437-20; Standard Test Method for Flow of Hydraulic Cement Mortar. ASTM International: West Conshohocken, PA, USA, 2020.
- Spiesz, P.; Hunger, M. Towards a more common use of Ultra-High Permormance Concrete (UHPC)-development of UHPC for ready-mix and prefabrication concrete plants. In Proceedings of the 11th High Performance Concrete Conference, Tromsø, Norway, 6–8 March 2017; Justnes, H., Braarud, H., Eds.; Norwegian Concrete Association/Tekna: Tromso, Norway, 2017; pp. 1–10. [Google Scholar]
- ASTM C939/C939M-22; Standard Test Method for Flow of Grout for Preplaced-Aggregate Concrete (Flow Cone Method). ASTM International: West Conshohocken, PA, USA, 2022.
- ASTM C230/C230M-23; Standard Specification for Flow Table for Use in Tests of Hydraulic Cement. ASTM International: West Conshohocken, PA, USA, 2023.
- ASTM C136/C136M-19; Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates. ASTM International: West Conshohocken, PA, USA, 2019.
- ASTM C128-22; Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate. ASTM International: West Conshohocken, PA, USA, 2022.
- ASTM C604-18; Standard Test Method for True Specific Gravity of Refractory Materials by Gas-Comparison Pycnometer. ASTM International: West Conshohocken, PA, USA, 2018.
- ASTM C185-20; Standard Test Method for Air Content of Hydraulic Cement Mortar. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM C403/C403M-23; Standard Test Method for Time of Setting of Concrete Mixtures by Penetration Resistance. ASTM International: West Conshohocken, PA, USA, 2023.
- ASTM C1611/C1611M-21; Standard Test Method for Slump Flow of Self-Consolidating Concrete. ASTM International: West Conshohocken, PA, USA, 2021.
- ASTM C109/C109M-23; Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 50 mm [2 in.] Cube Specimens). ASTM International: West Conshohocken, PA, USA, 2023.
- ASTM C192/C192M-24; Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory. ASTM International: West Conshohocken, PA, USA, 2024.
- ASTM C39/C39M-24; Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International: West Conshohocken, PA, USA, 2024.
- ASTM C469/C469M-22; Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression. ASTM International: West Conshohocken, PA, USA, 2022.
- ASTM C78/C78M-22; Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading). ASTM International: West Conshohocken, PA, USA, 2022.
- UNE-EN 14651:2007+A1:2008; Test Method for Metallic Fibre Concrete—Measuring the Flexural Tensile Strength (Limit of Proportionality (LOP), Residual). UNE Normalización Española: Madrid, Spain, 2007.
- ASTM C1856/C1856M-17; Standard Practice for Fabricating and Testing Specimens of Ultra-High Performance Concrete. ASTM International: West Conshohocken, PA, USA, 2017.
- Ultra-High Performance Concrete|FHWA. Available online: https://highways.dot.gov/research/structures/ultra-high-performance-concrete/ultra-high-performance-concrete (accessed on 1 September 2024).
- Sobuz, H.R.; Visintin, P.; Ali, M.S.M.; Singh, M.; Griffith, M.C.; Sheikh, A.H. Manufacturing ultra-high performance concrete utilising conventional materials and production methods. Constr. Build. Mater. 2016, 111, 251–261. [Google Scholar] [CrossRef]
- Choi, D.; Hong, K.; Ochirbud, M.; Meiramov, D.; Sukontaskuul, P. Mechanical Properties of Ultra-High Performance Concrete (UHPC) and Ultra-High Performance Fiber-Reinforced Concrete (UHPFRC) with Recycled Sand. Int. J. Concr. Struct. Mater. 2023, 17, 67. [Google Scholar] [CrossRef]
- Choi, S.W.; Choi, J.; Lee, S.C. Probabilistic Analysis for Strain-Hardening Behavior of High-Performance Fiber-Reinforced Concrete. Materials 2019, 12, 2399. [Google Scholar] [CrossRef]
- Hamoush, S.; Abu-Lebdeh, T.; Cummins, T. Deflection behavior of concrete beams reinforced with PVA micro-fibers. Constr. Build. Mater. 2010, 24, 2285–2293. [Google Scholar] [CrossRef]
- ASTM C1018-97; Standard Test Method for Flexural Toughness and First-Crack Strength of Fiber-Reinforced Concrete (Using Beam With Third-Point Loading). ASTM International: West Conshohocken, PA, USA, 1997.
- Li, Y.; Yang, E.H.; Tan, K.H. Flexural behavior of ultra-high performance hybrid fiber reinforced concrete at the ambient and elevated temperature. Constr. Build. Mater. 2020, 250, 118487. [Google Scholar] [CrossRef]
- Ferdosian, I.; Camões, A. Mechanical performance and post-cracking behavior of self-compacting steel-fiber reinforced eco-efficient ultra-high performance concrete. Cem. Concr. Compos. 2021, 121, 104050. [Google Scholar] [CrossRef]
- Zaid, O.; Hashmi, S.R.Z.; El Ouni, M.H.; Martínez-García, R.; de Prado-Gil, J.; Yousef, S.E.A.S. Experimental and analytical study of ultra-high-performance fiber-reinforced concrete modified with egg shell powder and nano-silica. J. Mater. Res. Technol. 2023, 24, 7162–7188. [Google Scholar] [CrossRef]
- Sorelli, L.T.H.; Hisseine, O.A.; Bouchard, D.; Brial, V.; Sanchez, T.; Coinciatori, D.; Ouellet-Plamondon, C. Development of sustainable ultra high performance concrete recycling aluminum production waste. Constr. Build. Mater. 2023, 317, 130212. [Google Scholar] [CrossRef]
- Chiaia, B.; Fantili, A.; Guerini, A.; Volpatti, G.; Zampini, D. Eco-mechanical index for structural concrete. Constr. Build. Mater. 2014, 67, 386–392. [Google Scholar] [CrossRef]
- Velez, A.L.; Mena, V.G. “Energía contenida y emisiones de CO2 en el proceso de fabricación del cemento” Ecuador. Ambiente Construído Porto Alegre 2020, 20, 611–625. [Google Scholar] [CrossRef]
Materials | SG * g/cm3 | WA % | SC % |
---|---|---|---|
CPO | 3.11 | --- | --- |
SF | 2.23 | --- | --- |
VC (D50= 8.4 μm) | 2.61 | 0.0 | --- |
VC (D50= 15.2 μm) | 2.56 | 0.0 | --- |
VC (D50= 40.7 μm) | 2.48 | 1.8 | --- |
VC (D50= 950 μm) | 2.39 | 1.8 | --- |
LS (D50= 950 μm) | 2.70 | 1.5 | --- |
LP (D50= 46.3 μm) | 2.70 | 2.1 | --- |
Superplasticizer | 1.10 | --- | 50 |
Defoamer | 0.96 | --- | --- |
Steel Micro-fiber | 7.90 | --- | --- |
Limestones and Vitrified Clay with D50 of | ||||||||
---|---|---|---|---|---|---|---|---|
PSD | CPO | SF | LS 950 μm | LP 46.3 μm | VC 8.4 μm | VC 15.2 μm | VC 40.7 μm | VC 950.0 μm |
D10 (μm) | 2.2 | 2.0 | 100.0 | 2.0 | 1.0 | 1.9 | 4.2 | 100.0 |
D50 (μm) | 15.2 | 12.0 | 950.0 | 40.7 | 8.4 | 15.2 | 40.7 | 950.0 |
D90 (μm) | 45.0 | 100.0 | 2400.0 | 100.0 | 33.8 | 141.2 | 112.0 | 2400.0 |
Materials | UHPC-C | UHPC-G | ||
---|---|---|---|---|
W/o SFR | With SFR | W/o SFR | With SFR | |
kg/m3 | kg/m3 | kg/m3 | kg/m3 | |
Water | 196.0 | 192.2 | 196.0 | 193.7 |
Superplasticizer | 7.9 | 7.7 | 7.9 | 7.8 |
Air-Occluding | 1.2 | 1.1 | 1.2 | 1.2 |
CPO | 720.0 | 705.9 | 504.0 | 498.0 |
SF | 80.0 | 78.4 | 0.0 | 0.0 |
VC (D50 = 8.4 μm) | 0.0 | 0.0 | 80.0 | 79.1 |
VC (D50 = 15.2 μm) | 0.0 | 0.0 | 216.0 | 213.4 |
VC (D50 = 40.7 μm) | 0.0 | 0.0 | 126.2 | 124.7 |
VC (D50 = 950 μm) | 0.0 | 0.0 | 234.3 | 231.6 |
LS (D50 = 950 μm) | 868.8 | 851.8 | 608.2 | 600.9 |
LP (D50 = 46.3 μm) | 467.9 | 458.7 | 327.5 | 323.6 |
Steel Micro-Fiber | 0.0 | 154.9 | 0.0 | 156.1 |
Air content (%) | 3.2 | 3.2 | 2.3 | 1.5 |
Concrete | Compressive Strength (MPa) [Standard Deviation] | Slope (m, in MPa/Day) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 d | 3 d | 7 d | 28 d | 56 d | 91 d | 1–7 d | 7–28 d | 7–91 d | 28–91 d | |
UHPC-C | 59 [0.6] | 93 [1.1] | 119 [0.7] | 138 [8.0] | 150 [5.9] | 153 [1.4] | 10.00 | 0.90 | 0.41 | 0.24 |
SFR-UHP-C | 75 [6.6] | 104 [1.3] | 130 [0.6] | 151 [0.1] | 165 [2.3] | 161 [2.1] | 9.20 | 1.00 | 0.37 | 0.16 |
UHPC-G | 45 [0.6] | 78 [2.5] | 98 [4.5] | 128 [4.9] | 153 [4.7] | 162 [4.2] | 8.80 | 1.40 | 0.76 | 0.54 |
SFR-UHPC-G | 55 [0.1] | 86 [2.5] | 108 [1.3] | 134 [4.2] | 161 [1.3] | 178 [1.1] | 8.80 | 1.20 | 0.83 | 0.70 |
Materials | Toughness Index (Arb. Units) | |||
---|---|---|---|---|
I5 | I10 | I20 | Ir | |
Plain Concrete | 1 | 1 | 1 | N.A. |
Elastic-Plastic Material (E-P M) | 5 | 10 | 20 | N.A. |
Fiber-Reinforced Concrete (FRC) | 1–6 | 1–12 | 1–25 | N.A. |
UHPC | 5.1–5.7 | 11.4–12.9 | 20.6–29.0 | N.A. |
SFR-UHPC-C | 6.7 | 16.5 | 34.0 | 109.0 |
SFR-UHPC-G | 6.2 | 14.9 | 34.2 | 110.8 |
Items | Embodied CO2 [kgCO2/kg] | UHPC-C kgCO2/m3 | SFR-UHPC-C kgCO2/m3 | UHPC-G kgCO2/m3 | SFR-UHPC-G kgCO2/m3 | References |
---|---|---|---|---|---|---|
Superplasticizer | 0.720 | 5.7 | 5.5 | 5.7 | 5.6 | [58] |
CPO | 0.830 | 597.6 | 597.6 | 418.4 | 413.3 | [59] |
SF | 0.000 | 0 | 0 | --- | --- | [59] |
VC (D50 = 8.4 μm) | 0.040 | --- | --- | 3.2 | 3.16 | [60] |
VC (D50 = 15.2 μm) | 0.040 | --- | --- | 8.6 | 8.5 | [60] |
VC (D50 = 40.7 μm) | 0.020 | --- | --- | 2.5 | 2.5 | [60] |
VC (D50 = 950 μm) | 0.003 | --- | --- | 0.7 | 0.7 | [60] |
LS (D50 = 950 μm) | 0.002 | 1.7 | 1.7 | 1.2 | 1.2 | [59] |
LP (D50 = 46.3 μm) | 0.017 | 8.0 | 7.8 | 5.6 | 5.5 | [59] |
Water | 0.000 | 0.1 | 0.1 | 0.1 | 0.1 | [59] |
Air excluder | 0.086 | 0.1 | 0.1 | 0.1 | 0.1 | [59] |
Steel fibers | 1.490 | 0.0 | 230.8 | 0.0 | 232.6 | [58] |
Total (kg of CO2/m3) | 613.1 | 843.6 | 446.1 | 673.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz-Espinoza, A.L.; López-Yépez, L.G.; Valdez-Aguilar, J.A.; Juarez-Alvarado, C.A.; Durán-Herrera, A. Vitrified Clay for the Production of a Green Sustainable Ultra-High-Performance Fiber-Reinforced Concrete. Materials 2024, 17, 5624. https://doi.org/10.3390/ma17225624
Muñoz-Espinoza AL, López-Yépez LG, Valdez-Aguilar JA, Juarez-Alvarado CA, Durán-Herrera A. Vitrified Clay for the Production of a Green Sustainable Ultra-High-Performance Fiber-Reinforced Concrete. Materials. 2024; 17(22):5624. https://doi.org/10.3390/ma17225624
Chicago/Turabian StyleMuñoz-Espinoza, Ana Luisa, Lucio Guillermo López-Yépez, José Abelardo Valdez-Aguilar, César Antonio Juarez-Alvarado, and Alejandro Durán-Herrera. 2024. "Vitrified Clay for the Production of a Green Sustainable Ultra-High-Performance Fiber-Reinforced Concrete" Materials 17, no. 22: 5624. https://doi.org/10.3390/ma17225624
APA StyleMuñoz-Espinoza, A. L., López-Yépez, L. G., Valdez-Aguilar, J. A., Juarez-Alvarado, C. A., & Durán-Herrera, A. (2024). Vitrified Clay for the Production of a Green Sustainable Ultra-High-Performance Fiber-Reinforced Concrete. Materials, 17(22), 5624. https://doi.org/10.3390/ma17225624