materials-logo

Journal Browser

Journal Browser

New Findings in Cementitious Materials (2nd Edition)

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Construction and Building Materials".

Deadline for manuscript submissions: 20 December 2024 | Viewed by 5032

Special Issue Editors


E-Mail Website
Guest Editor
Faculty of Mechanical and Electrical Engineering UANL (FIME), The Autonomous University of Nuevo León (UANL), San Nicolás de los Garza 66455, Mexico
Interests: hybrid cements; alkali activated cements; cement chemistry; supplementary cementitious materials; calcium sulfoaluminate cements; characterization techniques for cement-based materials

E-Mail Website
Guest Editor
Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, CA, USA
Interests: cement chemistry and mineralogy; thermodynamic modeling; chloride in cement; characterization techniques for cement-based materials; conservation of cultural heritage
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The discovery and exploitation of materials has greatly influenced our advancement as a civilization and enabled great improvements in our quality of life. This is especially true in the case of the materials of modern construction, viz. cement, concrete, and steel, which have led to the emplacement of buildings and infrastructure which fulfill functions ranging from human habitation structures, to sanitation and water conveyance systems and infrastructure. While, unarguably, cement, concrete (i.e., a mixture of cement, sand, stone, and water), and steel have found extensive use in the construction of building and infrastructure—e.g., in the construction of framed steel and reinforced concrete structures—the environmental impact of these materials poses foundational challenges. For example, at the current level of production—around 4.2 B tons in 2022—cement alone is responsible for nearly 9% of global CO2 emissions. This number is only expected to grow as development-related construction in Asia and Africa further expands the scale of cement production. This is an issue not only for the obvious impacts on climate change, but also because the imposition of CO2 penalties is expected to, in time, double the price of cement. The implications of this are straightforward, i.e., materials engineers working in the civil engineering field need to:

  • Identify alternate materials: Identify compositionally optimal, low-CO2 materials which can be used to replace and thereby reduce the use of cement as the binder in concrete or propose novel, functionally effective, and environmentally friendly construction materials;
  • Extend the service-life of infrastructure: Develop functional pathways to mitigate steel corrosion, which is unarguably the leading cause of premature structural decay of infrastructure.

Taking all of the above into consideration, this Special Issue aims to highlight recent findings and provide useful guidelines or problem solution options to consider for scientists and engineers dealing with sustainability and durability of the construction materials.

Dr. Lauren Yolanda Gómez-Zamorano
Dr. Magdalena Balonis
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • corrosion
  • durability
  • sustainability
  • low CO2 cements
  • admixtures
  • cement alternatives

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 6640 KiB  
Article
Vitrified Clay for the Production of a Green Sustainable Ultra-High-Performance Fiber-Reinforced Concrete
by Ana Luisa Muñoz-Espinoza, Lucio Guillermo López-Yépez, José Abelardo Valdez-Aguilar, César Antonio Juarez-Alvarado and Alejandro Durán-Herrera
Materials 2024, 17(22), 5624; https://doi.org/10.3390/ma17225624 - 18 Nov 2024
Viewed by 538
Abstract
As awareness of the impact of anthropogenic activities on climate change increases, the concepts of durability, resilience, and sustainability in concrete tend to be adopted more seriously in the concrete construction industry. In this sense, one of the concrete technologies that began in [...] Read more.
As awareness of the impact of anthropogenic activities on climate change increases, the concepts of durability, resilience, and sustainability in concrete tend to be adopted more seriously in the concrete construction industry. In this sense, one of the concrete technologies that began in the 1980s and that significantly contributes to maximize the beneficial effect on all these concepts are the ultra-high-performance concretes, a very attractive technology because it presents ultra-high strength and durability performances far superior to those of conventional concretes, a performance that is leading to a permanent increased demand. However, the development of these concretes has been widely criticized due to their high ecological impact, which is mainly attributable to the high cement dosages required for their production (800–1000 kg/m3). To address this criticism in a comprehensive manner and thereby reduce the embodied carbon attributable exclusively to the material, this research was oriented to determine the effect of an industrial by-product of vitrified clay, as a partial or total substitution for cement, silica fume, and limestone aggregate, on the compressive strength, flexural toughness, and embodied CO2. For the UHPC’s evaluated in this work with a dosage of 2% by volume of steel micro-fibers, the results evidence the feasibility that the following substitutions by mass: 30% of the Portland cement, 100% of the silica fume, and 30% of the limestone aggregate and powder, do not detract the fresh stage, the compressive strength, the static modulus of elasticity, and the flexural strength, leading to significant reductions of the embodied CO2. Full article
(This article belongs to the Special Issue New Findings in Cementitious Materials (2nd Edition))
Show Figures

Figure 1

31 pages, 16794 KiB  
Article
Effective Concrete Failure Area for SC Structures Using Stud and Tie Bar Under Performance Tests
by Yeongun Kim and Byong J. Choi
Materials 2024, 17(21), 5381; https://doi.org/10.3390/ma17215381 - 4 Nov 2024
Viewed by 624
Abstract
Nuclear power plants, where steel-plate concrete (SC) structures are commonly adopted, require large-scale components to withstand significant loads, such as those caused by sudden explosions. As a result, SC modular members used in nuclear power plants must have thicker walls filled with concrete [...] Read more.
Nuclear power plants, where steel-plate concrete (SC) structures are commonly adopted, require large-scale components to withstand significant loads, such as those caused by sudden explosions. As a result, SC modular members used in nuclear power plants must have thicker walls filled with concrete compared to standard-sized ones. These large walls also require additional components, such as tie bars and H-shaped steel sections, to reinforce adhesion and resist shear stresses. This study focuses on tie bars placed adjacent to studs and evaluates their influence on the tensile strength of wall structures. To investigate this, we conducted experimental tests using full-scale specimens, including various combinations ranging from single stud to combined stud-tie configurations. Based on the results of these performance tests, we propose a design recommendation for estimating the tensile capacity of SC structures, considering the influence of tie bars. Full article
(This article belongs to the Special Issue New Findings in Cementitious Materials (2nd Edition))
Show Figures

Figure 1

16 pages, 2131 KiB  
Article
The Effects of Ester and Ether Polycarboxylate Superplasticizers on the Fluidity and Setting Behavior of Alkali-Activated Slag Paste
by Yong Jic Kim, Sung Choi and Sung Rok Oh
Materials 2024, 17(20), 4951; https://doi.org/10.3390/ma17204951 - 10 Oct 2024
Viewed by 503
Abstract
This study aims to investigate the comparative performance of ester- and ether-based polycarboxylate superplasticizers in maintaining the fluidity and controlling the setting time of alkali-activated slag (AAS) paste. The experiments employed rheological tests, mini-slump tests, ultrasonic pulse velocity (UPV) measurements, and gel permeation [...] Read more.
This study aims to investigate the comparative performance of ester- and ether-based polycarboxylate superplasticizers in maintaining the fluidity and controlling the setting time of alkali-activated slag (AAS) paste. The experiments employed rheological tests, mini-slump tests, ultrasonic pulse velocity (UPV) measurements, and gel permeation chromatography (GPC) analysis. The results indicate that ether-based superplasticizers maintain fluidity approximately 25% longer than their ester-based counterparts and extend the setting time by about 30%. The enhanced performance of ether-based superplasticizers is attributed to their superior molecular stability in highly alkaline environments, which mitigates early polymer degradation. Additionally, the Na2O/SiO2 ratio was maintained at 1:1 throughout the experiments to ensure consistency in the activation process. The relationship between fluidity loss and the onset of setting occurs more rapidly in AAS paste than in conventional cement-based systems. These findings provide valuable insights for the development of environmentally friendly construction materials by optimizing the use of superplasticizers in alkali-activated systems. Full article
(This article belongs to the Special Issue New Findings in Cementitious Materials (2nd Edition))
Show Figures

Figure 1

14 pages, 2348 KiB  
Article
Experimental Study on the Effects of Tapioca Starch on Cement Mortar Quality Improvement
by Chang-Hwan Jang, Yong-Jic Kim and Sung-Rok Oh
Materials 2024, 17(16), 3889; https://doi.org/10.3390/ma17163889 - 6 Aug 2024
Cited by 1 | Viewed by 765
Abstract
In this study, the effect of tapioca starch (TP) on mortar was evaluated by incorporating TP into the mortar mixture. The evaluation involved analyzing the mortar’s quality characteristics, performance, and fundamental quality improvements. The addition of TP resulted in a decrease in flow, [...] Read more.
In this study, the effect of tapioca starch (TP) on mortar was evaluated by incorporating TP into the mortar mixture. The evaluation involved analyzing the mortar’s quality characteristics, performance, and fundamental quality improvements. The addition of TP resulted in a decrease in flow, which was attributed to increased viscosity. Specifically, a 10% reduction in flow was observed with a 0.025% increase in TP content. After 28 days, the impact of TP on the compressive strength of the mortar remained consistent, regardless of the TP amount. However, within the first 3 days, higher TP content accelerated strength development, with early compressive strength increasing by up to 20% at a 0.050% TP level. Additionally, bond strength improved by approximately 60% at a 0.050% TP concentration, and final shrinkage was reduced by 5%. Full article
(This article belongs to the Special Issue New Findings in Cementitious Materials (2nd Edition))
Show Figures

Figure 1

19 pages, 10155 KiB  
Article
Mechanical Properties and Durability of Composite Cement Pastes Containing Phase-Change Materials and Nanosilica
by Javier Ziga-Carbarín, Lauren Y. Gómez-Zamorano, Arquímedes Cruz-López, Soorya Pushpan, Sofía Vázquez-Rodríguez and Magdalena Balonis
Materials 2024, 17(13), 3271; https://doi.org/10.3390/ma17133271 - 2 Jul 2024
Viewed by 757
Abstract
Escalating global surface temperatures are highlighting the urgent need for energy-saving solutions. Phase-change materials (PCMs) have emerged as a promising avenue for enhancing thermal comfort in the construction sector. This study assessed the impact of incorporating PCMs ranging from 1% to 10% by [...] Read more.
Escalating global surface temperatures are highlighting the urgent need for energy-saving solutions. Phase-change materials (PCMs) have emerged as a promising avenue for enhancing thermal comfort in the construction sector. This study assessed the impact of incorporating PCMs ranging from 1% to 10% by mass into composite Portland cement partially replaced by fly ash (FA) and nanosilica particles (NS). Mechanical and electrochemical techniques were utilized to evaluate composite cements. The results indicate that the presence of PCMs delayed cement hydration, acting as a filler without chemically interacting within the composite. The combination of FA and PCMs reduced compressive strength at early ages, while thermal conductivity decreased after 90 days due to the melting point and the latent heat of PCMs. Samples with FA and NS showed a significant reduction in the CO2 penetration, attributed to their pozzolanic and microfiller effects, as well as reduced water absorption due to the non-absorptive nature of PCMs. Nitrogen physisorption confirmed structural changes in the cement matrix. Additionally, electrical resistivity and thermal behavior assessments revealed that PCM-containing samples could reduce temperatures by an average of 4 °C. This suggested that PCMs could be a viable alternative for materials with thermal insulation capacity, thereby contributing to energy efficiency in the construction sector. Full article
(This article belongs to the Special Issue New Findings in Cementitious Materials (2nd Edition))
Show Figures

Figure 1

9 pages, 1185 KiB  
Article
New Method for Photoactive Cement Preparation—Selected Mechanical Properties and Photocatalytic Activity of New Materials
by Magdalena Janus, Jarosław Strzałkowski, Kamila Zając and Ewelina Kusiak-Nejman
Materials 2024, 17(10), 2285; https://doi.org/10.3390/ma17102285 - 11 May 2024
Cited by 1 | Viewed by 1164
Abstract
In this study, a new method of obtaining photoactive cements is presented. The goal was to obtain photoactive cements using a method that could reduce the production costs. In the study, an intermediate product from the production of titanium dioxide using the sulfate [...] Read more.
In this study, a new method of obtaining photoactive cements is presented. The goal was to obtain photoactive cements using a method that could reduce the production costs. In the study, an intermediate product from the production of titanium dioxide using the sulfate method, taken from the installation before the calcination process, was used to obtain photoactive cements. Laboratory conditions corresponding to introducing this amorphous TiO2 into cement clinker during its cooling were simulated. The study shows that the temperature from 300 to 800 °C and the time of amorphous TiO2 contact with the cement clinker within 30 min is sufficient to obtain a photoactive cement. The highest photocatalytic activity was obtained for the material with 5 wt.% TiO2 content, and the method used did not cause a significant decrease in the bending and compressive strength of the new photoactive cements. The obtained materials were characterized by determining the crystal size of the TiO2, the sulfur content and the photocatalytic activity during NO decomposition under UV radiation. The bending and compressive strength were measured. The influence of the addition of photocatalysts on the beginning and end of the setting time was also investigated. Full article
(This article belongs to the Special Issue New Findings in Cementitious Materials (2nd Edition))
Show Figures

Figure 1

Back to TopTop