Incorporating Wastewater Sludge as a Cement Alternative in Repair Mortar: An Experimental Study of Material Properties
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Raw Materials
2.2. Mix Proportion and Specimen Preparation
2.3. Experimental Methods and Methodology
2.3.1. Flow Tests and Setting Time
2.3.2. Mechanical Strength Test
2.3.3. Water Absorption Rate Test
2.3.4. Chloride Penetration Test
2.3.5. Carbonation Depth Test
2.3.6. Freeze–Thaw Test
2.3.7. Microstructure Analysis
2.3.8. Environmental Hazard Analysis
3. Results and Discussion
3.1. Flow Tests and Setting Time
3.2. Mechanical Strength
3.3. Water Absorption and Bond Strength Test
3.4. Chemical Attack Test
3.5. Freeze–Thaw Damage
3.6. Microstructure Analysis
3.7. Environmental Hazard Analysis
3.8. Discussion on Comparison with Other Studies
4. Conclusions
- The substitution of cement with pretreated wastewater sludge (A-WWS) maintained flow characteristics comparable to the control mixture, while untreated sludge (B-WWS) reduced workability due to coarser particles. Pretreated sludge also resulted in a shorter setting time, indicating improved reactivity, whereas untreated sludge caused significant delays in setting due to its lower reactivity.
- Pretreated sludge enhanced the compressive and flexural strength of mortar, particularly at a 10% substitution level, compared to untreated sludge. The pozzolanic reactions driven by pretreated sludge contributed to the formation of calcium silicate hydrates (C-S-H), improving strength. Higher sludge content (20%) showed diminishing returns in strength, especially with untreated sludge acting as a filler.
- Mortars incorporating pretreated sludge demonstrated significantly lower water absorption and increased bond strength, which enhanced durability. Untreated sludge, with its higher porosity and organic content, resulted in increased water absorption and weaker bonding, making it less effective for long-term durability.
- The pretreated sludge samples (A-WWS) exhibited superior resistance to both carbonation and chloride penetration compared to untreated sludge. The 10% pretreated sample demonstrated optimal performance, reducing CO2 and chloride ion ingress due to a denser, less porous matrix created by the pretreatment process.
- The environmental hazard analysis confirmed that the use of wastewater sludge in mortar does not pose significant environmental risks, with heavy metal concentrations well below safety limits. This ensures that sludge-based repair mortars can be considered a sustainable and environmentally friendly option for structural repairs without compromising safety.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lin, Y.; Zhou, S.; Li, F.; Lin, Y. Utilization of Municipal Sewage Sludge as Additives for the Production of Eco-Cement. J. Hazard. Mater. 2012, 213–214, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Zaker, A.; Chen, Z.; Wang, X.; Zhang, Q. Microwave-Assisted Pyrolysis of Sewage Sludge: A Review. Fuel Process. Technol. 2019, 187, 84–104. [Google Scholar] [CrossRef]
- Baidya, R.; Ghosh, S.K.; Parlikar, U.V. Co-Processing of Industrial Waste in Cement Kiln—A Robust System for Material and Energy Recovery. Procedia Environ. Sci. 2016, 31, 309–317. [Google Scholar] [CrossRef]
- Gu, Y.; Cao, H.; Liu, W.; Lin, X.; Zheng, T.; Cheng, W.; Huang, J.; Xu, J. Impact of Co-Processing Sewage Sludge on Cement Kiln NOx Emissions Reduction. J. Environ. Chem. Eng. 2021, 9, 105511. [Google Scholar] [CrossRef]
- Kosajan, V.; Wen, Z.; Zheng, K.; Fei, F.; Wang, Z.; Tian, H. Municipal Solid Waste (MSW) Co-Processing in Cement Kiln to Relieve China’s Msw Treatment Capacity Pressure. Resour. Conserv. Recycl. 2021, 167, 105384. [Google Scholar] [CrossRef]
- Cieślik, B.M.; Namieśnik, J.; Konieczka, P. Review of Sewage Sludge Management: Standards, Regulations and Analytical Methods. J. Clean. Prod. 2015, 90, 1–15. [Google Scholar] [CrossRef]
- Samolada, M.C.; Zabaniotou, A.A. Comparative Assessment of Municipal Sewage Sludge Incineration, Gasification and Pyrolysis for a Sustainable Sludge-to-Energy Management in Greece. Waste Manag. 2014, 34, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Pang, D.; Mao, Y.; Jin, Y.; Song, Z.; Wang, X.; Li, J.; Wang, W. Review on the Use of Sludge in Cement Kilns: Mechanism, Technical, and Environmental Evaluation. Process Saf. Environ. Prot. 2023, 172, 1072–1086. [Google Scholar] [CrossRef]
- Keeley, J.; Jarvis, P.; Judd, S.J. Coagulant Recovery from Water Treatment Residuals: A Review of Applicable Technologies. Crit. Rev. Environ. Sci. Technol. 2014, 44, 2675–2719. [Google Scholar] [CrossRef]
- Horpibulsuk, S.; Suksiripattanapong, C.; Samingthong, W.; Rachan, R.; Arulrajah, A. Durability against Wetting–Drying Cycles of Water Treatment Sludge–Fly Ash Geopolymer and Water Treatment Sludge–Cement and Silty Clay–Cement Systems. J. Mater. Civ. Eng. 2016, 28, 04015078. [Google Scholar] [CrossRef]
- Rodríguez, N.H.; Ramírez, S.M.; Varela, M.T.B.; Guillem, M.; Puig, J.; Larrotcha, E.; Flores, J. Re-Use of Drinking Water Treatment Plant (DWTP) Sludge: Characterization and Technological Behaviour of Cement Mortars with Atomized Sludge Additions. Cem. Concr. Res. 2010, 40, 778–786. [Google Scholar] [CrossRef]
- De Carvalho Gomes, S.; Zhou, J.L.; Li, W.; Long, G. Progress in Manufacture and Properties of Construction Materials Incorporating Water Treatment Sludge: A Review. Resour. Conserv. Recycl. 2019, 145, 148–159. [Google Scholar] [CrossRef]
- de Godoy, L.G.G.; Rohden, A.B.; Garcez, M.R.; da Costa, E.B.; Da Dalt, S.; Andrade, J.J.d.O. Valorization of Water Treatment Sludge Waste by Application as Supplementary Cementitious Material. Constr. Build. Mater. 2019, 223, 939–950. [Google Scholar] [CrossRef]
- Shi, C.; Fernández-Jiménez, A. Stabilization/Solidification of Hazardous and Radioactive Wastes with Alkali-Activated Cements. J. Hazard. Mater. 2006, 137, 1656–1663. [Google Scholar] [CrossRef] [PubMed]
- Danish, A.; Ozbakkaloglu, T. Greener Cementitious Composites Incorporating Sewage Sludge Ash as Cement Replacement: A Review of Progress, Potentials, and Future Prospects. J. Clean. Prod. 2022, 371, 133364. [Google Scholar] [CrossRef]
- Chen, R.; Ma, X.; Yu, Z.; Chen, L.; Chen, X.; Qin, Z. Study on Synchronous Immobilization Technology of Heavy Metals and Hydrolyzed Nitrogen during Pyrolysis of Sewage Sludge. J. Environ. Chem. Eng. 2021, 9, 106079. [Google Scholar] [CrossRef]
- Davydov, S.Y.; Apakashev, R.A.; Oleynikova, L.N. Use of Water Treatment Sludge in the Production of Building and Ceramic Materials. Refract. Ind. Ceram. 2023, 64, 109–114. [Google Scholar] [CrossRef]
- Chang, F.C.; Lin, J.D.; Tsai, C.C.; Wang, K.S. Study on Cement Mortar and Concrete Made with Sewage Sludge Ash. Water Sci. Technol. 2010, 62, 1689–1693. [Google Scholar] [CrossRef]
- Abebe, T.N.; Woo, B.-H.; Kim, H.G.; Ryou, J.-S. Real-Time Monitoring of Self-Sensing Cementitious Composite Incorporating Hybrid Silicon Carbide and Graphite for Enhanced Structural Health Monitoring. Cem. Concr. Compos. 2024, 146, 105404. [Google Scholar] [CrossRef]
- Gastaldini, A.L.G.; Hengen, M.F.; Gastaldini, M.C.C.; do Amaral, F.D.; Antolini, M.B.; Coletto, T. The Use of Water Treatment Plant Sludge Ash as a Mineral Addition. Constr. Build. Mater. 2015, 94, 513–520. [Google Scholar] [CrossRef]
- Husillos Rodríguez, N.; Martínez-Ramírez, S.; Blanco-Varela, M.T.; Guillem, M.; Puig, J.; Larrotcha, E.; Flores, J. Evaluation of Spray-Dried Sludge from Drinking Water Treatment Plants as a Prime Material for Clinker Manufacture. Cem. Concr. Compos. 2011, 33, 267–275. [Google Scholar] [CrossRef]
- Abebe, T.N.; Kim, H.G.; Woo, B.-H.; Ryou, J.-S. Assessment of Impact Load Effect on Self-Sensing of Cement Composites Incorporating Hybrid Silicon Carbide-Graphite under Various Environmental Conditions. Constr. Build. Mater. 2024, 451, 138755. [Google Scholar] [CrossRef]
- de Godoy, L.G.G.; Rohden, A.B.; Garcez, M.R.; Da Dalt, S.; Bonan Gomes, L. Production of Supplementary Cementitious Material as a Sustainable Management Strategy for Water Treatment Sludge Waste. Case Stud. Constr. Mater. 2020, 12, e00329. [Google Scholar] [CrossRef]
- Paris, J.M.; Roessler, J.G.; Ferraro, C.C.; DeFord, H.D.; Townsend, T.G. A Review of Waste Products Utilized as Supplements to Portland Cement in Concrete. J. Clean. Prod. 2016, 121, 1–18. [Google Scholar] [CrossRef]
- Rodríguez, O.; Kacimi, L.; López-Delgado, A.; Frías, M.; Guerrero, A. Characterization of Algerian Reservoir Sludges for Use as Active Additions in Cement: New Pozzolans for Eco-Cement Manufacture. Constr. Build. Mater. 2013, 40, 275–279. [Google Scholar] [CrossRef]
- Bohórquez González, K.; Pacheco, E.; Guzmán, A.; Avila Pereira, Y.; Cano Cuadro, H.; Valencia, J.A.F. Use of Sludge Ash from Drinking Water Treatment Plant in Hydraulic Mortars. Mater. Today Commun. 2020, 23, 100930. [Google Scholar] [CrossRef]
- Yang, J.; Ren, Y.; Chen, S.; Zhang, Z.; Pang, H.; Wang, X.; Lu, J. Thermally Activated Drinking Water Treatment Sludge as a Supplementary Cementitious Material: Properties, Pozzolanic Activity and Hydration Characteristics. Constr. Build. Mater. 2023, 365, 130027. [Google Scholar] [CrossRef]
- C150 Standard Specification for Portland Cement. Available online: https://www.astm.org/standards/c150 (accessed on 18 October 2024).
- Standard Specification for Concrete Aggregates. Available online: https://www.astm.org/c0033_c0033m-18.html (accessed on 18 October 2024).
- Jang, C.; Abebe, T.N. Utilizing Wheel Washing Machine Sludge as a Cement Substitute in Repair Mortar: An Experimental Investigation into Material Characteristics. Materials 2024, 17, 2037. [Google Scholar] [CrossRef]
- Standard Test Method for Flow of Hydraulic Cement Mortar. Available online: https://www.astm.org/c1437-20.html (accessed on 18 October 2024).
- Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-Mm] Cube Specimens). Available online: https://www.astm.org/c0109_c0109m-20.html (accessed on 18 October 2024).
- Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars. Available online: https://www.astm.org/c0348-21.html (accessed on 18 October 2024).
- Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. Available online: https://www.astm.org/c0642-21.html (accessed on 18 October 2024).
- NT Build 492. Available online: https://www.betonconsultingeng.com/services/concrete-testing/nt-build-492/ (accessed on 18 October 2024).
- ISO 1920-12:2015. Available online: https://www.iso.org/standard/57932.html (accessed on 18 October 2024).
- Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing. Available online: https://www.astm.org/c0666-97.html (accessed on 18 October 2024).
- Tadesse, N.A.; Ryou, J.-S.; Park, K.T.; Kim, J.Y.; Kim, H.G.; Woo, B.-H. Investigation of the Prolonged Effect of Electric Stress into the Cement Mortar Incorporating Silicon Carbide. J. Build. Eng. 2023, 76, 107352. [Google Scholar] [CrossRef]
- Tian, X.; Jiang, H.; Hu, L.; Wang, M.; Cui, W.; Shi, J.; Liu, G.; Yin, Y.; Cai, Y.; Jiang, G. Simultaneous Multi-Element and Multi-Isotope Detection in Single-Particle ICP-MS Analysis: Principles and Applications. TrAC Trends Anal. Chem. 2022, 157, 116746. [Google Scholar] [CrossRef]
- Mañosa, J.; Cerezo-Piñas, M.; Maldonado-Alameda, A.; Formosa, J.; Giro-Paloma, J.; Rosell, J.R.; Chimenos, J.M. Water Treatment Sludge as Precursor in Non-Dehydroxylated Kaolin-Based Alkali-Activated Cements. Appl. Clay Sci. 2021, 204, 106032. [Google Scholar] [CrossRef]
- Li, D.; Zhuge, Y.; Liu, Y.; Pham, P.N.; Zhang, C.; Duan, W.; Ma, X. Reuse of Drinking Water Treatment Sludge in Mortar as Substitutions of Both Fly Ash and Sand Based on Two Treatment Methods. Constr. Build. Mater. 2021, 277, 122330. [Google Scholar] [CrossRef]
- Klus, L.; Václavík, V.; Dvorský, T.; Svoboda, J.; Papesch, R. The Utilization of Waste Water from a Concrete Plant in the Production of Cement Composites. Buildings 2017, 7, 120. [Google Scholar] [CrossRef]
- He, Z.-H.; Han, X.-D.; Jin, J.; Li, J.; Tang, W.; Shi, J. Recycling of Water Treatment Sludge in Concrete: The Role of Water-Binder Ratio from a Nanoscale Perspective. Sci. Total Environ. 2023, 873, 162456. [Google Scholar] [CrossRef] [PubMed]
- Andrade, J.J.D.O.; Possan, E.; Wenzel, M.C.; Silva, S.R.D. Feasibility of Using Calcined Water Treatment Sludge in Rendering Mortars: A Technical and Sustainable Approach. Sustainability 2019, 11, 3576. [Google Scholar] [CrossRef]
- Liu, X.; Ma, B.; Tan, H.; He, X.; Zhao, R.; Chen, P.; Su, Y.; Yang, J. Preparation of Ultrafine Fly Ash by Wet Grinding and Its Utilization for Immobilizing Chloride Ions in Cement Paste. Waste Manag. 2020, 113, 456–468. [Google Scholar] [CrossRef]
- Shi, W.; Najimi, M.; Shafei, B. Reinforcement Corrosion and Transport of Water and Chloride Ions in Shrinkage-Compensating Cement Concretes. Cem. Concr. Res. 2020, 135, 106121. [Google Scholar] [CrossRef]
- Sagidullina, N.; Abdialim, S.; Kim, J.; Satyanaga, A.; Moon, S.-W. Influence of Freeze–Thaw Cycles on Physical and Mechanical Properties of Cement-Treated Silty Sand. Sustainability 2022, 14, 7000. [Google Scholar] [CrossRef]
- Hoang, T.; Do, H.; Alleman, J.; Cetin, B.; Dayioglu, A.Y. Comparative Evaluation of Freeze and Thaw Effect on Strength of BEICP-Stabilized Silty Sands and Cement- and Fly Ash-Stabilized Soils. Acta Geotech. 2023, 18, 1073–1092. [Google Scholar] [CrossRef]
- Liu, Y.; Zhuge, Y.; Chow, C.W.K.; Keegan, A.; Pham, P.N.; Li, D.; Oh, J.-A.; Siddique, R. The Potential Use of Drinking Water Sludge Ash as Supplementary Cementitious Material in the Manufacture of Concrete Blocks. Resour. Conserv. Recycl. 2021, 168, 105291. [Google Scholar] [CrossRef]
- Gu, C.; Ji, Y.; Zhang, Y.; Yang, Y.; Liu, J.; Ni, T. Recycling Use of Sulfate-Rich Sewage Sludge Ash (SR-SSA) in Cement-Based Materials: Assessment on the Basic Properties, Volume Deformation and Microstructure of SR-SSA Blended Cement Pastes. J. Clean. Prod. 2021, 282, 124511. [Google Scholar] [CrossRef]
- Garcés, P.; Pérez Carrión, M.; García-Alcocel, E.; Payá, J.; Monzó, J.; Borrachero, M.V. Mechanical and Physical Properties of Cement Blended with Sewage Sludge Ash. Waste Manag. 2008, 28, 2495–2502. [Google Scholar] [CrossRef] [PubMed]
- Mahutjane, T.C.; Tchadjié, L.N.; Sithole, T.N. The Feasibility of Utilizing Sewage Sludge as a Source of Aluminosilicate to Synthesise Geopolymer Cement. J. Mater. Res. Technol. 2023, 25, 3314–3323. [Google Scholar] [CrossRef]
- Żeglugi, I. Śródlądowej z Dnia 29 Sierpnia. 2019. Available online: https://scholar.google.com/scholar_lookup?title=Rozporz%C4%85dzenie%20Ministra%20Gospodarki%20Morskiej%20I%20%C5%BBeglugi%20%C5%9Ar%C3%B3dl%C4%85dowej%20Z%20Dnia%2029%20Sierpnia%202019%20R.%20W%20Sprawie%20Wymaga%C5%84%2C%20Jakim%20Powinny%20Odpowiada%C4%87%20Wody%20Powierzchniowe%20Wykorzystywane%20Do%20Zaopatrzenia%20Ludno%C5%9Bci%20W%20Wod%C4%99%20Przeznaczon%C4%85%20Do%20Spo%C5%BCycia%20Przez%20Ludzi&publication_year=2019&author=Dz.U.%20RP%20Poz.%201747 (accessed on 7 November 2024).
- Hazrati, S.; Farahbakhsh, M.; Cerdà, A.; Heydarpoor, G. Functionalization of Ultrasound Enhanced Sewage Sludge-Derived Biochar: Physicochemical Improvement and Its Effects on Soil Enzyme Activities and Heavy Metals Availability. Chemosphere 2021, 269, 128767. [Google Scholar] [CrossRef] [PubMed]
Oxide Content/wt.% | Physical Characteristics. | |||||||
---|---|---|---|---|---|---|---|---|
SiO2 | Al2O | CaO | Fe2O3 | MgO | K2O | Specific Gravity (g/cm3) | Surface Area (cm2/g) | Ig. Loss |
20.8 | 6.3 | 62.0 | 3.2 | 2.9 | 2.1 | 3.15 | 3410 | 1.5 |
Oxide Content/wt.% | Physical Characteristics. | ||||||
---|---|---|---|---|---|---|---|
SiO2 | Al2O | CaO | Fe2O3 | MgO | K2O | Specific Gravity (g/cm3) | Surface Area (cm2/g) |
38.26 | 20.01 | 10.78 | 6.76 | 2.4 | 3.63 | 2.24 | 5684 |
Mix ID | W/B (%) | Title 3 | All Units Are (g) | |||
---|---|---|---|---|---|---|
Cement | WWS | Sand | WR (%) | |||
Treated | Non-Treated | |||||
CS | 40 | 700 | - | - | ||
B-WWS 10 | 630 | 70 | - | |||
B-WWS 20 | 560 | 140 | - | 1400 | 0.7 | |
A-WWS 10 | 630 | - | 70 | |||
A-WWS 20 | 560 | - | 140 |
Test ID | Specimen Dimension (mm3) | Shape |
---|---|---|
Compressive test | 50 × 50 × 50 | prism |
Flexural test | 40 × 40 × 160 | prism |
Freeze–thaw test | 100 × 100 × 400 | prism |
Chlorine penetration test | Φ 100 × 50 | Cylinder (disc) |
Carbonation depth test | Φ 100 × 50 | Cylinder (disc) |
Water absorption rate test | 50 × 50 × 50 | Cubic |
Elements | Standard | Test Result |
---|---|---|
Pb | <3 mg/L | N/D (Non-Detected) |
Cu | <3 mg/L | 0.02 |
As | <1.5 mg/L | N/D (Non-Detected) |
Cd | <0.005 mg/L | N/D (Non-Detected) |
Cr6+ | <1.5 mg/L | 0.035 |
Hg | <0.3 mg/L | N/D (Non-Detected) |
organic phosphorus | <1 mg/L | N/D (Non-Detected) |
Ref | Compressive Strength (28 Day) | Flow (mm) | Final Setting Time |
---|---|---|---|
Gu et al. [50] | 49.3 | 95 mm | 400 |
Chang et al. [18] | 38.5 | 120 mm | N/A |
Garces et al. [51] | 50.3 | 117 mm | 250 |
This study | 42.1 | 170 mm | 250 |
Ref | Pb | Cu | As | Cd | Cr | Hg | Organic Phosphorus |
---|---|---|---|---|---|---|---|
Mahutjane et al. [52] | 0.203 mg/L | N/D | N/D | N/D | <0.009 mg/L | <0.002 mg/L | N/D |
Chen et al. [16] | 0.015 mg/L | 0.0263 mg/L | 0.013 mg/L | N/D | 0.321 mg/L | N/D | |
Dz.U.RP et al. [53] | <0.05 mg/L | <0.5 mg/L | <0.05 mg/L | <0.005 mg/L | <5 mg/L | <0.001 mg/L | N/D |
This study | N/D | 0.02 mg/L | N/D | N/D | 0.035 mg/L | N/D | N/D |
Hazrati et al. [54] | 0.015 mg/L | <0.026 mg/L | 0.0059 mg/L | 0.0008 mg/L | 0.01 mg/L | N/D | N/D |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-B. Incorporating Wastewater Sludge as a Cement Alternative in Repair Mortar: An Experimental Study of Material Properties. Materials 2024, 17, 5625. https://doi.org/10.3390/ma17225625
Lee J-B. Incorporating Wastewater Sludge as a Cement Alternative in Repair Mortar: An Experimental Study of Material Properties. Materials. 2024; 17(22):5625. https://doi.org/10.3390/ma17225625
Chicago/Turabian StyleLee, Jeong-Bae. 2024. "Incorporating Wastewater Sludge as a Cement Alternative in Repair Mortar: An Experimental Study of Material Properties" Materials 17, no. 22: 5625. https://doi.org/10.3390/ma17225625
APA StyleLee, J. -B. (2024). Incorporating Wastewater Sludge as a Cement Alternative in Repair Mortar: An Experimental Study of Material Properties. Materials, 17(22), 5625. https://doi.org/10.3390/ma17225625