Effects of Postweld Heat Treatment on Interfacial Behavior and Mechanical Properties of Joints Welded with Cu/Ni-Cr Alloy
Abstract
:1. Introduction
2. Materials and Methods
3. Experimental Results
3.1. Microstructure and Phase Analysis
3.2. Mechanical Properties
4. Discussion
5. Conclusions
- TIG welding with a pure copper filler wire was used to successfully join Ni-Cr alloy and copper, resulting in well-formed weld joints. Fractures during tensile testing predominantly occurred in the copper base material. The joints exhibited an average tensile strength of 240 MPa.
- During the welding process, copper and nickel mutually dissolved, leading to the formation of a Cu0.81Ni0.19 reinforcing phase that enhanced the joint’s structural properties. A diffusion layer of columnar crystals developed at the interface between the Ni-Cr alloy and the fusion zone.
- Prolonged PWHT promoted grain boundary migration, facilitating the growth of columnar crystals. This led to an increasingly smooth surface profile of the welded joint. The electrochemical potential difference between the Ni-Cr alloy and copper stabilized at approximately 310 mV after heat treatment, suggesting increased interface stability and potential corrosion resistance.
- The microhardness of the joint gradually decreased from the Ni-Cr alloy side to the Cu side. As the PWHT duration increased, the nanoindentation results at the Ni-Cr alloy fusion line displayed contrasted the overall hardness of each region, initially decreasing before increasing.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, S.-Y.; Zhang, Q.; Mclellan, B.; Zhang, T.-T. Review on the petroleum market in China: History, challenges and prospects. Pet. Sci. 2020, 17, 1779–1794. [Google Scholar] [CrossRef]
- Bera, A.; Babadagli, T. Status of electromagnetic heating for enhanced heavy oil/bitumen recovery and future prospects: A review. Appl. Energy 2015, 151, 206–226. [Google Scholar] [CrossRef]
- Sivakumar, P.; Krishna, S.; Hari, S.; Vij, R.K. Electromagnetic heating, an eco-friendly method to enhance heavy oil production: A review of recent advancements. Environ. Technol. Innov. 2020, 20, 101100. [Google Scholar] [CrossRef]
- Djimasbe, R.; Varfolomeev, M.A.; Al-Muntaser, A.A.; Yuan, C.; Feoktistov, D.A.; Suwaid, M.A.; Kirgizov, A.J.; Davletshin, R.R.; Zinnatullin, A.L.; Fatou, S.D.; et al. Oil dispersed nickel-based catalyst for catalytic upgrading of heavy oil using supercritical water. Fuel 2021, 313, 122702. [Google Scholar] [CrossRef]
- Carpenter, C. Downhole electrical heating for enhanced heavy-oil recovery. J. Pet. Technol. 2014, 66, 132–134. [Google Scholar] [CrossRef]
- Sandberg, C.; Thomas, K.; Hale, A. Advances in Electrical Heating Technology for Heavy Oil Production. In Proceedings of the SPE Heavy Oil Conference-Canada, Calgary, AB, Canada, 10–12 June 2014. [Google Scholar] [CrossRef]
- Casalino, G. Advances in welding metal alloys, dissimilar metals and additively manufactured parts. Metals 2017, 7, 32. [Google Scholar] [CrossRef]
- Eisazadeh, H.; Aidun, D. Residual stress reduction in dissimilar metals weld. J. Manuf. Process. 2021, 64, 1462–1475. [Google Scholar] [CrossRef]
- Uhlenberg, L.; Baumgartner, J.; Rößler, C.; Schmicker, D.; Köhler, M.; Trommer, F.; Dilger, K. Fatigue Strength Assessment of Friction Welds under Consideration of Residual Stress. Materials 2024, 17, 3130. [Google Scholar] [CrossRef]
- Marques, M.; Ramasamy, A.; Batista, A.; Nobre, J.; Loureiro, A. Effect of heat treatment on microstructure and residual stress fields of a weld multilayer austenitic steel clad. J. Mech. Work. Technol. 2015, 222, 52–60. [Google Scholar] [CrossRef]
- Yadav, V.K.; Gaur, V.; Singh, I. Combined effect of residual and mean stresses on fatigue behavior of welded aluminum 2024 alloy. Int. J. Fatigue 2022, 155, 106565. [Google Scholar] [CrossRef]
- Wang, B.; Zhou, L.; Cao, Y.; Xue, P.; Wu, L. Analysis of residual stress relief for Ti62A alloy welded joints by post weld heat treatment considering creep effect. J. Mater. Res. Technol. 2023, 24, 7462–7474. [Google Scholar] [CrossRef]
- Chao, Q.; Thomas, S.; Birbilis, N.; Cizek, P.; Hodgson, P.D.; Fabijanic, D. The effect of post-processing heat treatment on the microstructure, residual stress and mechanical properties of selective laser melted 316L stainless steel. Mater. Sci. Eng. A 2021, 821, 141611. [Google Scholar] [CrossRef]
- Kuril, A.A.; Jagannatham, M.; Ram, G.D.J.; Bakshi, S.R. Effect of Post-Weld Heat Treatment on the Microstructure of Plasma Arc Welded DP600 Steel. Met. Microstruct. Anal. 2019, 8, 848–860. [Google Scholar] [CrossRef]
- Liu, J.; Miao, Y.; Wang, Z.; Zhao, Y.; Wu, Y.; Li, C. Effect of heat treatment on microstructure and properties of additively manufactured aluminum bronze-steel bimetallic structures. Mater. Charact. 2024, 207, 113462. [Google Scholar] [CrossRef]
- Karakaş, O.; Kardeş, F.B.; Foti, P.; Berto, F. Dissimilar Welding Applications and Evaluation of Fatigue Behaviour of Welded Jo ints: An Overview. Strength Mater. 2023, 55, 111–127. [Google Scholar] [CrossRef]
- Kuryntsev, S. A review: Laser welding of dissimilar materials (Al/Fe, Al/Ti, Al/Cu)—Methods and techniques, microstructure and properties. Materials 2021, 15, 122. [Google Scholar] [CrossRef]
- Gotawala, N.; Shrivastava, A. Investigation of interface microstructure and mechanical properties of rotatory friction welded dissimilar aluminum-steel joints. Mater. Sci. Eng. A 2021, 825, 141900. [Google Scholar] [CrossRef]
- Li, B.; Shen, Y.; Luo, L.; Hu, W. Effects of processing variables and heat treatments on Al/Ti-6Al-4V interface microstructure of bimetal clad-plate fabricated via a novel route employing friction stir lap welding. J. Alloy Compd. 2016, 658, 904–913. [Google Scholar] [CrossRef]
- Seo, W.-G.; Suh, J.-Y.; Shim, J.-H.; Lee, H.; Yoo, K.; Choi, S.-H. Effect of post-weld heat treatment on the microstructure and hardness of P92 steel in IN740H/P92 dissimilar weld joints. Mater. Charact. 2020, 160, 110083. [Google Scholar] [CrossRef]
- Li, Y.-L.; Di, H.-S.; Wang, X.-N.; Chen, L.-Q.; Li, T.-X. Effect of post-weld heat treatment on the microstructure and properties of titanium/304 stainless steel laser welding dissimilar metal joints with copper as the transition layer. Mater. Today Commun. 2023, 36, 106593. [Google Scholar] [CrossRef]
- Bina, M.H.; Dehghani, F.; Salimi, M. Effect of heat treatment on bonding interface in explosive welded copper/stainless steel. Mater. Des. 2013, 45, 504–509. [Google Scholar] [CrossRef]
- Dong, H.-G.; Yu, L.-Z.; Gao, H.-M.; Deng, D.-W.; Zhou, W.-L.; Dong, C. Microstructure and mechanical properties of friction welds between TiAl alloy and 40Cr steel rods. Trans. Nonferrous Met. Soc. China 2014, 24, 3126–3133. [Google Scholar] [CrossRef]
- Kah, P.; Shrestha, M.; Martikainen, J. Trends in joining dissimilar metals by welding. Appl. Mech. Mater. 2014, 440, 269–276. [Google Scholar] [CrossRef]
- Baghel, P.K. Effect of SMAW process parameters on similar and dissimilar metal welds: An overview. Heliyon 2022, 8, e12161. [Google Scholar] [CrossRef]
- Holland, S.; Wang, X.; Fang, X.; Guo, Y.; Yan, F.; Li, L. Grain boundary network evolution in Inconel 718 from selective laser melting to heat treatment. Mater. Sci. Eng. A 2018, 725, 406–418. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, W.; Xie, B.; Yu, H.; Ning, Y.; Zhang, B. Investigation of the heat treatment process and formation mechanism of grain boundary serration for GH4795 superalloy. Metals 2022, 12, 1521. [Google Scholar] [CrossRef]
- Xu, Y.; Hou, X.; Shi, Y.; Zhang, W.; Gu, Y.; Feng, C.; Volodymyr, K. Correlation between the microstructure and corrosion behaviour of copper/316 L stainless-steel dissimilar-metal welded joints. Corros. Sci. 2021, 191, 109729. [Google Scholar] [CrossRef]
- Sarvghad-Moghaddam, M.; Parvizi, R.; Davoodi, A.; Haddad-Sabzevar, M.; Imani, A. Establishing a correlation between interfacial microstructures and corrosion initiation sites in Al/Cu joints by SEM–EDS and AFM–SKPFM. Corros. Sci. 2014, 79, 148–158. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, W.; Yu, X.; Xie, H.; Zhou, C.; Song, H.; Huang, J. Microstructure and Characteristics of the Welded Joint between Ni-Cr Alloys and Copper. Metals 2024, 14, 1105. [Google Scholar] [CrossRef]
- Zhang, C.; Gong, B.; Deng, C.; Wang, D. Computational prediction of mechanical properties of a C-Mn weld metal based on the microstructures and micromechanical properties. Mater. Sci. Eng. A 2017, 685, 310–316. [Google Scholar] [CrossRef]
- Kah, P.; Vimalraj, C.; Martikainen, J.; Suoranta, R. Factors influencing Al-Cu weld properties by intermetallic compound formation. Int. J. Mech. Mater. Eng. 2015, 10, 1–13. [Google Scholar] [CrossRef]
- Xue, P.; Xiao, B.; Ni, D.; Ma, Z. Enhanced mechanical properties of friction stir welded dissimilar Al–Cu joint by intermetallic compounds. Mater. Sci. Eng. A 2010, 527, 5723–5727. [Google Scholar] [CrossRef]
- Xie, Y.; Huang, J.; Su, J.; Luo, Y.; Du, H.; Fan, D. Effect of nickel interlayer on laser welding of copper/titanium dissimilar metal joint. J. Mater. Res. Technol. 2023, 27, 4416–4429. [Google Scholar] [CrossRef]
- Xie, B.; Li, L.; Fang, Q.; Li, J.; Liu, B.; Huang, Z.; Tan, L. Evolution of residual stress and its impact on Ni-based superalloy. Int. J. Mech. Sci. 2021, 202–203, 106494. [Google Scholar] [CrossRef]
- Gao, L.; Li, X.; Hua, P.; Wang, M.; Zhou, W. Nickel interlayer on the microstructure and property of TC6 to copper alloy diffusion bonding. J. Adhes. Sci. Technol. 2018, 32, 1548–1559. [Google Scholar] [CrossRef]
- Xin, J.; Zhang, H.; Sun, W.; Huang, C.; Wang, S.; Wei, J.; Wang, W.; Fang, Z.; Wu, D.; Li, L. The microstructures and mechanical properties of dissimilar laser welding of copper and 316L stainless steel with Ni interlayer. Cryogenics 2021, 118, 103344. [Google Scholar] [CrossRef]
- Chakrabarti, D.J.; Laughlin, D.E. The Cr-Cu (chromium-copper) system. Bull. Alloy Phase Diagrams 1984, 5, 59–68. [Google Scholar] [CrossRef]
Material | Cu | Bi | Sb | As | Fe | Pb | S |
---|---|---|---|---|---|---|---|
Red copper | ≥99.9 | ≤0.001 | ≤0.002 | ≤0.002 | ≤0.005 | ≤0.005 | ≤0.005 |
Material | C | Mn | P | S | Si | Fe | Al | Cr | Ni |
---|---|---|---|---|---|---|---|---|---|
Cr20Ni80 | ≤0.08 | ≤0.6 | ≤0.02 | ≤0.0015 | 0.75–1.60 | ≤1 | ≤0.5 | 20–23 | Balance |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Xie, H.; Yu, X.; Zhang, J.; Zhou, C.; Song, H.; Huang, J. Effects of Postweld Heat Treatment on Interfacial Behavior and Mechanical Properties of Joints Welded with Cu/Ni-Cr Alloy. Materials 2024, 17, 5634. https://doi.org/10.3390/ma17225634
Zhang W, Xie H, Yu X, Zhang J, Zhou C, Song H, Huang J. Effects of Postweld Heat Treatment on Interfacial Behavior and Mechanical Properties of Joints Welded with Cu/Ni-Cr Alloy. Materials. 2024; 17(22):5634. https://doi.org/10.3390/ma17225634
Chicago/Turabian StyleZhang, Wanpeng, Hang Xie, Xiaoquan Yu, Jingang Zhang, Chao Zhou, Hongbing Song, and Jiankang Huang. 2024. "Effects of Postweld Heat Treatment on Interfacial Behavior and Mechanical Properties of Joints Welded with Cu/Ni-Cr Alloy" Materials 17, no. 22: 5634. https://doi.org/10.3390/ma17225634
APA StyleZhang, W., Xie, H., Yu, X., Zhang, J., Zhou, C., Song, H., & Huang, J. (2024). Effects of Postweld Heat Treatment on Interfacial Behavior and Mechanical Properties of Joints Welded with Cu/Ni-Cr Alloy. Materials, 17(22), 5634. https://doi.org/10.3390/ma17225634