Identification of Deformation Effects While Shaping the Material Surface Relief Due to Burnishing Treatment
Abstract
:1. Introduction
2. Analyses of the Stereometry Constitution in the Deformation Zone—Cases of Burnishing Treatment
2.1. Initial Stage of the Deformation Formation Process
2.2. Forming the Geometrical Structure of the Deformation Zone
3. Results and Discussion
3.1. Stereometric Shape Analysis of the Deformation Zone
3.2. Microscopic Shape Analysis of the Deformation Zone
4. Conclusions
- (1)
- The geometric characteristics of the deformation zone are shaped by factors such as the properties of the machined material, the initial surface roughness, and the burnishing tool’s shape and processing parameters. During burnishing, the deformed material shifts both in the axial direction (aligned with and opposite to the tool feed) and circumferentially.
- (2)
- As demonstrated, axial material flow is critical for achieving the desired final surface structure in the burnishing process. The deformation primarily affects material regions containing the peaks of roughness left by previous machining, leading to only partial smoothing of these peaks. As the burnishing force increases, a wave of displaced material forms and grows, eventually exceeding the height of the initial roughness peaks when a specific force threshold is crossed. Under these conditions, a stable deformation zone (or type III deformation) forms, which is ideal for obtaining the optimal surface properties through burnishing.
- (3)
- The undertaken analysis of a series of stereometry images of the deformation focus and the machined burnished surfaces with different processing parameters allowed for the description of the process of shaping the deformation zone. It was observed that the analysed burnishing process was unstable in the initial phase. In this initial stage of forming the deformation, the tool was penetrating the machined material. At the same time, the material wave was growing in both the axial and circumferential directions. After the initial period of instability, which characterised the beginning of the process of shaping the analysed deformation zones, the parameters of the deformation focus stabilised and reached a constant value.
- (4)
- The practical application of measurement stations for simulation analysis of specific stereometry parameters and deformation zone shapes in burnished surfaces significantly enhances the quantity and relevance of information gathered post-processing. This approach allows for precise determination of the burnishing tool’s contact area with the processed material, information that was previously unattainable, thus enabling accurate measurement of contact stress values within the contact zone. It also facilitates the monitoring of shape changes within the deformation zone in both axial and circumferential cross-sections.
- (5)
- Analyses indicate that the most representative parameters describing changes in the deformation zone geometry are the deformation wave height (hf), measured in the axial cross-section, and the depth of tool penetration relative to the unprocessed material surface (hfo).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Przybylski, W. Low Plasticity Burnishing Processes: Fundamentals, Tools and Machine Tools; Publishing of the Institute for Sustainable Technologies—National Research Institute: Radom, Poland, 2019.
- Korzyński, M. Nagniatanie Ślizgowe; WNT: Warszawa, Poland, 2007. (In Polish) [Google Scholar]
- Tubielewicz, K. Analiza Zjawisk Towarzyszących Odkształceniu Warstwy Wierzchniej w Procesie Nagniatania; Seria Monografie nr 13; Wydawnictwo Politechniki Częstochowskiej: Częstochowa, Poland, 1990. (In Polish) [Google Scholar]
- Zaborski, A. Analiza Formowania Strefy Deformacji w Procesie Nagniatania; Seria Monografie nr 260; Wydawnictwo Politechniki Częstochowskiej: Częstochowa, Poland, 2013. (In Polish) [Google Scholar]
- Kułakowska, A.; Kukiełka, L. Analiza Numeryczna Wpływu Odchyłek Zarysu Nierówności Powierzchni po Toczeniu na Wybrane Właściwości Warstwy Wierzchniej Wyrobu Nagniatanego. Praca Zbiorowa pod Redakcją Włodzimierza Przybylskiego “Współczesne Problemy w Technologii Obróbki Przez Nagniatanie”; Wydawnictwo Politechniki Gdańskiej: Gdańsk, Poland, 2008; Volume Tom 2, pp. 127–134. (In Polish) [Google Scholar]
- Chodór, J.; Kukiełka, L. Komputerowe Modelowanie i Symulacja Procesu Przemieszczania Ostrza po Sprężysto-Lepko-Plastycznym Podłożu na Przykładzie Nagniatania Ślizgowego. Praca Zbiorowa pod Red. Włodzimierza Przybylskiego “Współczesne Problemy w Technologii Obróbki Przez Nagniatanie”; Wydawnictwo Politechniki Gdańskiej: Gdańsk, Poland, 2008; Volume Tom 2, pp. 39–46. (In Polish) [Google Scholar]
- Dyl, T.; Rydz, T.; Szarek, A.; Stradomski, G.; Fik, J.; Opydo, M. The Influence of Slide Burnishing on the Technological Quality of X2CrNiMo17-12-2 Steel. Materials 2024, 17, 3403. [Google Scholar] [CrossRef]
- Maximov, J.; Duncheva, G.; Anchev, A.; Dunchev, V.; Anastasov, K.; Deskalova, P. Effect of Roller Burnishing and Slide Roller Burnishing on Surface Integrity of AISI 316 Steel: Theoretical and Experimental Comparative Analysis. Machines 2024, 12, 51. [Google Scholar] [CrossRef]
- Rotella, G.; Caruso, S.; Del Prete, A.; Filice, L. Prediction of Surface Integrity Parameters in Roller Burnishing of Ti6Al4V. Metals 2020, 10, 1671. [Google Scholar] [CrossRef]
- Dzierwa, A.; Markopoulos, A.P. Influence of Ball-Burnishing Process on Surface Topography Parameters and Tribological Properties of Hardened Steel. Machines 2019, 7, 11. [Google Scholar] [CrossRef]
- Swirad, S. Changes in Areal Surface Textures Due to Ball Burnishing. Materials 2023, 16, 5904. [Google Scholar] [CrossRef] [PubMed]
- Skoczylas, A.; Zaleski, K.; Matuszak, J.; Ciecieląg, K.; Zaleski, R.; Gorgol, M. Influence of Slide Burnishing Parameters on the Surface Layer Properties of Stainless Steel and Mean Positron Lifetime. Materials 2022, 15, 8131. [Google Scholar] [CrossRef] [PubMed]
- Kułakowska, A.; Bohdal, Ł. Surface Characterization of Carbon Steel after Rolling Burnishing Treatment. Metals 2024, 14, 31. [Google Scholar] [CrossRef]
- Balland, P.; Tabourot, L.; Degre, F.; Moreau, V. Mechanics of the burnishing process. Precis. Eng. 2013, 37, 129–134. [Google Scholar] [CrossRef]
- Zaborski, A.; Wimczek, J. Imaging and computer analysis in the shape error measurements and in the cylindrical objects stereometry. IOP Conf. Ser. Mater. Sci. Eng. 2020, 776, 012077. [Google Scholar] [CrossRef]
- Zaborski, A. Komputerowo wspomagane pomiary parametrów geometrycznych strefy deformacji w procesie nagniatania. Mechanik 2019, 8–9, 548–550. (In Polish) [Google Scholar] [CrossRef]
- Zalewski, K.; Skoczylas, A. Effect of slide burnishing on the surface layer and fatigue life of titanium alloy parts. Adv. Mater. Sci. 2019, 19, 62. [Google Scholar] [CrossRef]
- Grzesik, W.; Żak, K. Modification of surface finish produced by hard turning using superfinishing and burnishing operations. J. Mater. Process. Technol. 2012, 212, 315–322. [Google Scholar] [CrossRef]
- Saini, D.; Kapoor, M.; Jawalkar, C.S. Parametric Analysis of Mild Steel Specimens Using Roller Burnishing Process. Int. Ref. J. Eng. Sci. 2017, 6, 45–51. [Google Scholar]
- Korzyński, M.; Lubas, J.; Świrad, S.; Dudek, K. Surface layer characteristics due to slide diamond burnishing with a cylindrical-ended tool. J. Mater. Process. Technol. 2011, 211, 84–94. [Google Scholar] [CrossRef]
- Lin, Y.C.; Wang, S.W.; Lai, H.Y. The relationship between surface roughness and burnishing factor in the burnishing process. Int. J. Adv. Manuf. Technol. 2004, 23, 666–671. [Google Scholar] [CrossRef]
- Cagan, S.C.; Pruncu, C.I.; Buldum, B.B. An investigation into ball burnishing process of magnesium alloy on CNC lathe using different environments. J. Magnes. Alloys 2020, 8, 1061–1070. [Google Scholar] [CrossRef]
- Korzyński, M. Modeling and experimental validation of the force-surface roughness relation for smoothing burnishing with a spherical tool. Int. J. Mach. Tools Manuf. 2007, 47, 1956–1964. [Google Scholar] [CrossRef]
- Hassan, A.M.; Al-Bsharat, A.S. Influence of burnishing process on surface roughness, hardness, and microstructure of some non-ferrous metals. Wear 1996, 199, 1–8. [Google Scholar] [CrossRef]
- Sagbas, A. Analysis and optimization of surface roughness in the ball burnishing process using response surface methodology and desirabilty function. Adv. Eng. Softw. 2011, 42, 992–998. [Google Scholar] [CrossRef]
- Raza, A.; Kumar, S.A. Critical review of tool design in burnishing process. Tribol. Int. 2022, 174, 107717. [Google Scholar] [CrossRef]
- Oliveira, D.A.; Martins, A.M.; Magalhaes, F.C.; Abrao, A.M. Characterization of the topography generated by low plasticity burnishing using advanced techniques. Surf. Coat. Technol. 2022, 448, 128891. [Google Scholar] [CrossRef]
- Kovács, Z.F.; Viharos, Z.J.; Kodácsy, J. Determination of the working gap and optimal machining parameters for magnetic assisted ball burnishing. Measurement 2018, 118, 172–180. [Google Scholar] [CrossRef]
- Kovacs, Z.F.; Viharos, Z.J.; Kodacsy, J. Improvements of surface tribological properties by magnetic assisted ball burnishing. Surf. Coat. Technol. 2022, 437, 128317. [Google Scholar] [CrossRef]
- Kovacs, Z.F.; Viharos, Z.J.; Kodacsy, J. Surface flatness and roughness evolution after magnetic assisted ball burnishing of magnetizable and non-magnetizable materials. Measurement 2020, 158, 107750. [Google Scholar] [CrossRef]
- Swirad, S.; Wdowik, R. Determining the effect of ball burnishing parameters on surface roughness using the Taguchi method. Procedia Manuf. 2019, 34, 287–292. [Google Scholar] [CrossRef]
- Dix, M.; Posdzich, M. Force-controlled burnishing process for high surface integrity on additive manufactured parts. Procedia CIRP 2022, 108, 642–647. [Google Scholar] [CrossRef]
- Saldana-Robles, A.; Plascencia-Mora, H.; Aguilera-Gómez, E.; Saldana-Robles, A.; Marquez-Herrera, A.; Angel Diosdado-De la Pena, J.A. Influence of ball-burnishing on roughness, hardness and corrosion resistance of AISI 1045 steel. Surf. Coat. Technol. 2018, 339, 191–198. [Google Scholar] [CrossRef]
- Malleswara Rao, J.N.; Chenna Kesava Reddy, A.; Rama Rao, P.V. The effect of roller burnishing on surface hardness and surface roughness on mild steel specimens. Int. J. Appl. Eng. Res. 2011, 1, 777–785. [Google Scholar]
- Frihat, M.H.; Al Quran, F.M.F.; Al-Odat, M.Q. Experimental Investigation of the Influence of Burnishing Parameters on Surface Roughness and Hardness of Brass Alloy. J. Mater. Sci. Eng. 2015, 5, 216. [Google Scholar]
- El-Tayeb, N.S.M.; Low, K.O.; Brevern, P.V. Enhancement of surface quality and tribological properties using ball burnishing process. Mach. Sci. Technol. 2008, 12, 234–248. [Google Scholar] [CrossRef]
- El-Tayeb, N.S.M.; Low, K.O.; Brevern, P.V. Influence of roller burnishing contact width and burnishing orientation on surface quality and tribological behaviour of Aluminium 6061. J. Mater. Process. Technol. 2007, 186, 272–278. [Google Scholar] [CrossRef]
- El-Tayeb, N.S.M.; Low, K.O.; Brevern, P.V. On the surface and tribological characteristics of burnished cylindrical Al-6061. Tribol. Int. 2009, 42, 320–326. [Google Scholar] [CrossRef]
- Tubielewicz, K.; Zaborski, A. Przebieg procesu zużywania nagniatanych warstw wierzchnich. Tribologia 2008, 4, 165–174. (In Polish) [Google Scholar]
- Zaborski, A.; Tubielewicz, K. Analiza przebiegu procesu zużywania warstwy wierzchniej po nagniataniu. In Praca Zbiorowa pod Redakcją Włodzimierza Przybylskiego “Współczesne problemy w Technologii Obróbki Przez Nagniatanie”; Wydawnictwo Politechniki Gdańskiej: Gdańsk, Poland, 2005; Chap. III.12; pp. 255–264. (In Polish) [Google Scholar]
- Zaborski, A. Analysis of the Wear Process of Surface Layers after Burnishing. Tribologia 2022, 1, 97–109. [Google Scholar] [CrossRef]
- Tubielewicz, K. Analiza Naprężeń Powstających w Warstwie Wierzchniej Podczas Procesu Nagniatania; Wydawnictwo Politechniki Częstochowskiej: Częstochowa, Poland, 1993. (In Polish) [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaborski, A.; Rogólski, R.; Grzywiński, S. Identification of Deformation Effects While Shaping the Material Surface Relief Due to Burnishing Treatment. Materials 2024, 17, 5635. https://doi.org/10.3390/ma17225635
Zaborski A, Rogólski R, Grzywiński S. Identification of Deformation Effects While Shaping the Material Surface Relief Due to Burnishing Treatment. Materials. 2024; 17(22):5635. https://doi.org/10.3390/ma17225635
Chicago/Turabian StyleZaborski, Andrzej, Robert Rogólski, and Stanisław Grzywiński. 2024. "Identification of Deformation Effects While Shaping the Material Surface Relief Due to Burnishing Treatment" Materials 17, no. 22: 5635. https://doi.org/10.3390/ma17225635
APA StyleZaborski, A., Rogólski, R., & Grzywiński, S. (2024). Identification of Deformation Effects While Shaping the Material Surface Relief Due to Burnishing Treatment. Materials, 17(22), 5635. https://doi.org/10.3390/ma17225635