The Influence of Mechanical Properties of Laser-Melted Tungsten Carbide Composite with Nickel/Cobalt Ingredients
Abstract
:1. Introduction
2. Experimental Procedure
Materials and Preparations
3. Experimental Design and Method
3.1. Experimental Design Based on Orthogonal Array
3.2. Analysis of Variance
3.3. Response Surface Analysis
4. Results and Discussion
4.1. Microstructure of the Cladding Zone of WC/Co/Ni Welds
4.2. Wear Behavior of Co/Ni-Mixed WC Welds
4.3. Effect of Co/Ni Additive Blends on WC Welds
4.4. Empirical Model Construction
4.5. Empirical Model Analysis
4.6. Confirmation Experiments
5. Concluding Remarks
- (1)
- The microstructure of the white area of the melting zone is dominated by dendritic carbides, which are close to 81% or more W, while the percentage of C is about 3–5%. In addition, EDS analyses of the wear areas showed that the areas of resistance to wear contain areas of carbides that are high in W and O content but low in Fe content.
- (2)
- The wear resistance of the WC/Co/Ni welds varied considerably, and that of WC with Co and Ni was much higher than that of WC/Co or W/Ni. Compared with the substrate, the wear resistance of the coatings in this study increased by about five times or more, indicating that the coatings have good wear resistance.
- (3)
- The resulting analysis of variance showed that the effect of four variables on the wear volume was obvious, in which the factors Co%, Ni%, laser power and scanning height were significant in accounting for more than 92.26% of the total variance.
- (4)
- Linear function, interaction function and second-order functions were used in RSM, whose Adjust-R2 coefficients were 0.82, 0.84 and 0.73, respectively. The interaction model demonstrated good predictive power in the experimental area.
- (5)
- WC welds with Co/Ni additions by laser cladding are effective against substrate wear, thereby verifying that the interaction model provides a more reliable model for the cladding process.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Suryanarayanan, R. Plasma Spraying: Theory and Applications; World Scientific: Singapore, 1993. [Google Scholar] [CrossRef]
- Sun, G.; Zhou, R.; Lu, J.; Mazumder, J. Evaluation of defect density, microstructure, residual stress, elastic modulus, hardness and strength of laser-deposited AISI 4340 steel. Acta Mater. 2015, 84, 172–189. [Google Scholar] [CrossRef]
- Luo, X.; Li, J.; Li, G. Effect of NiCrBSi content on microstructural evolution, cracking susceptibility and wear behaviors of laser cladding WC/Ni-NiCrBSi composite coatings. J. Alloys Compd. 2015, 626, 102–111. [Google Scholar] [CrossRef]
- Afzal, M.; Ajmal, M.; Khan, A.N.; Hussain, A.; Akhter, R. Surface modification of air plasma spraying WC-12% Co cermet coating by laser melting technique. Opt. Laser Technol. 2014, 56, 202–206. [Google Scholar] [CrossRef]
- Chen, C.Z.; Lei, T.Q.; Bao, Q.H.; Yao, S.S. Problems and the improving measures in laser remelting of plasma sprayed ceramic coatings. Mater. Sci. Technol. 2002, 10, 431–435. [Google Scholar]
- Wen, P.; Feng, Z.; Zheng, S. Formation quality optimization of laser hot wire cladding for repairing martensite precipitation hardening stainless steel. Opt. Laser Technol. 2015, 65, 180–188. [Google Scholar] [CrossRef]
- Afzal, M.; Khan, A.N.; Ben Mahmud, T.; Khan, T.; Ajmal, M. Effect of laser melting on plasma sprayed WC-12 wt.% Co coatings. Surf. Coat. Technol. 2015, 266, 22–30. [Google Scholar] [CrossRef]
- Zhang, J.; Lei, J.; Gu, Z.; Tantai, F.; Tian, H.; Han, J.; Fang, Y. Effect of WC-12Co content on wear and electrochemical corrosion properties of Ni-Cu/ WC-12Co composite coatings deposited by laser cladding. Surf. Coat. Technol. 2020, 393, 125807. [Google Scholar] [CrossRef]
- Tehrani, H.M.; Shoja-Razavi, R.; Erfanmanesh, M.; Hashemi, S.H.; Barekat, M. Evaluation of the mechanical properties of WC-Ni composite coating on an AISI 321 steel substrate. Opt. Laser Technol. 2020, 127, 106138. [Google Scholar] [CrossRef]
- Zhou, S.; Dai, X. Laser induction hybrid rapid cladding of WC particles reinforced NiCrBSi composite coatings. Appl. Surf. Sci. 2010, 256, 4708–4714. [Google Scholar] [CrossRef]
- Kim, Y.G.; Dowben, P.A.; Spencer, J.T.; Ramseyer, G.O. Chemical vapor deposition of boron and boron nitride from decaborane(14). J. Vac. Sci. Technol. A 1989, 7, 2796–2799. [Google Scholar] [CrossRef]
- Cao, Q.; Fan, L.; Chen, H.; Hou, Y.; Dong, L.; Ni, Z. Wear behavior of laser cladded WC-reinforced Ni-based coatings under low temperature. Tribol. Int. 2022, 176, 107939. [Google Scholar] [CrossRef]
- Paul, C.; Alemohammad, H.; Toyserkani, E.; Khajepour, A.; Corbin, S. Cladding of WC–12 Co on low carbon steel using a pulsed Nd:YAG laser. Mater. Sci. Eng. A 2007, 464, 170–176. [Google Scholar] [CrossRef]
- Hao, E.; Zhao, X.; An, Y.; Deng, W.; Ren, Y.; Zhou, H.; Chen, J. WC-Co reinforced NiCoCrAlYTa composite coating: Effect of the proportion on microstructure and tribological properties. Int. J. Refract. Met. Hard Mater. 2019, 84, 104978. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Hagino, H. Effects of the ambient oxygen concentration on WC-12Co cermet coatings fabricated by laser cladding. Opt. Laser Technol. 2021, 139, 106922. [Google Scholar] [CrossRef]
- Wu, P.; Du, H.M.; Chen, X.L.; Li, Z.Q.; Bai, H.L.; Jiang, E.Y. Influence of WC particle behavior on the wear resistance properties of Ni-WC composite coatings. Wear 2004, 257, 142–147. [Google Scholar] [CrossRef]
- Kumar, A.; Das, A.K. Evolution of microstructure and mechanical properties of Co-SiC tungsten inert gas cladded coating on 304 stainless steel. Eng. Sci. Technol. Int. J. 2021, 24, 591–604. [Google Scholar] [CrossRef]
- Wang, J.D.; Li, L.Q.; Tao, W. Crack initiation and propagation behavior of WC particles reinforced Fe-based metal matrix composite produced by laser melting deposition. Opt. Laser Technol. 2016, 82, 170–182. [Google Scholar] [CrossRef]
- Zhou, S.; Zeng, X.; Hu, Q.; Huang, Y. Analysis of crack behavior for Ni-based WC composite coatings by laser cladding and crack-free realization. Appl. Surf. Sci. 2008, 255, 1646–1653. [Google Scholar] [CrossRef]
- Farahmand, P.; Kovacevic, R. Laser cladding assisted with an induction heater (LCAIH) of Ni-60%WC coating. J. Mater. Process. Technol. 2015, 222, 244–258. [Google Scholar] [CrossRef]
- Zhou, S.F.; Huang, Y.J.; Zeng, X.Y. A study of Ni-based WC composite coatings by laser induction hybrid rapid cladding with elliptical spot. Appl. Surf. Sci. 2008, 254, 3110–3119. [Google Scholar] [CrossRef]
- Kretz, F.; Gácsi, Z.; Kovács, J.; Pieczonka, T. The electroless deposition of nickel on SiC particles for aluminum matrix composites. Surf. Coat. Technol. 2004, 180–181, 575–579. [Google Scholar] [CrossRef]
- Zafar, S.; Sharma, A.K. Investigations on flexural performance and residual stresses in nanometric WC-12Co microwave clads. Surf. Coat. Technol. 2016, 291, 413–422. [Google Scholar] [CrossRef]
- Zhou, S.F.; Lei, J.B.; Dai, X.Q.; Guo, J.B.; Gu, Z.J.; Pan, H.B. A comparative study of the structure and wear resistance of NiCrBSi/50 wt.% WC composite coatings by laser cladding and laser induction hybrid cladding. Int. J. Refract. Met. Hard Mater. 2016, 60, 17–27. [Google Scholar] [CrossRef]
- Shu, D.; Li, Z.G.; Zhang, K.; Yao, C.W.; Li, D.Y.; Dai, Z.B. In situ synthesized high volume fraction WC reinforced Ni-based coating by laser cladding. Mater. Lett. 2017, 195, 178–181. [Google Scholar] [CrossRef]
- Zhong, M.; Liu, W.; Yao, K.; Goussain, J.-C.; Mayer, C.; Becker, A. Microstructural evolution in high power laser cladding of Stellite 6+WC layers. Surf. Coat. Technol. 2002, 157, 128–137. [Google Scholar] [CrossRef]
- Zhou, S.; Dai, X.; Zheng, H. Microstructure and wear resistance of Fe-based WC coating by multi-track overlapping laser induction hybrid rapid cladding. Opt. Laser Technol. 2012, 44, 190–197. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Han, K.; Wan, L.; Zhang, X.; Jiao, S.; Shi, X.; Jiang, C.; Zhu, Z. Microstructure and mechanical properties of sol-enhanced nanostructured Ni-Al2O3 composite coatings and the applications in WC-Co/steel joints under ultrasound. Mater. Sci. Eng. A 2020, 775, 138977. [Google Scholar] [CrossRef]
- Noviyanto, A.; Yoon, D.-H. Metal oxide additives for the sintering of silicon carbide: Reactivity and densification. Curr. Appl. Phys. 2013, 13, 287–292. [Google Scholar] [CrossRef]
- Lee, S.P.; Shin, Y.S.; Bae, D.S.; Min, B.H.; Park, J.S.; Kohyama, A. Fabrication of liquid phase sintered SiC materials and their characterization. Fusion Eng. Des. 2006, 81, 963–967. [Google Scholar] [CrossRef]
- Li, N.; Xiong, Y.; Xiong, H.P.; Shi, G.Q.; Jon, B.B.; Liu, W.; Qin, R.Y. Microstructure, formation mechanism and property characterization of Ti + SiC laser cladded coatings on Ti6Al4V alloy. Mater. Charact. 2019, 148, 43–51. [Google Scholar] [CrossRef]
- Xu, J.S.; Zhang, X.C.; Xuan, F.Z.; Wang, Z.D.; Tu, S.T. Microstructure and sliding wear resistance of laser cladded WC/Ni composite coatings with different contents of WC particle. J. Mater. Eng. Perform. 2012, 21, 1904–1911. [Google Scholar] [CrossRef]
- Luo, W.; Selvadurai, U.; Tillmann, W. Effect of residual stress on the wear resistance of thermal spray coatings. J. Therm. Spray Technol. 2016, 25, 321–330. [Google Scholar] [CrossRef]
- Zoei, M.S.; Sadeghi, M.H.; Salehi, M. Effect of grinding parameters on the wear resistance and residual stress of HVOF-deposited WC-10Co-4Cr coating. Surf. Coat. Technol. 2016, 307, 886–891. [Google Scholar] [CrossRef]
- Wu, Y.W.; Wu, A. Taguchi method for Robust Design; The American Society of Mechanical Engineers: New York, NY, USA, 2000; pp. 97–177. [Google Scholar] [CrossRef]
- Myers, R.H.; Montgomery, D.C. Response Surface Methodology: Process and Product Optimization Using Design Experiments; John-Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Lin, B.T.; Jean, M.D.; Chou, J.H. Using response surface methodology for optimizing deposited partially stabilized zirconia in plasma spraying. Appl. Surf. Sci. 2007, 253, 3254–3262. [Google Scholar] [CrossRef]
- Guilemany, J.M.; Dosta, S.; Miguel, J.R. The enhancement of the properties of WC-Co HVOF coatings through the use of nanostructured and microstructured feedstock powders. Surf. Coat. Technol. 2006, 201, 1180–1190. [Google Scholar] [CrossRef]
- Long, J.; Zhang, W.; Wang, Y.; Du, Y.; Zhang, Z.; Lu, B.; Cheng, K.; Peng, Y. A new type of WC-Co-Ni-Al cemented carbide: Grain size and morphology of -strengthened composite binder phase. Scr. Mater. 2017, 126, 33–36. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Chen, S.Y.; Xie, L.G.; Yang, E.; Bu, T.; Cheung, I.; Jean, M.D. Multi-objective optimization of laser welds with mixed WC/Co/Ni experiments using simplex-centroid design. Mater. Sci. 2023, 29, 445–455. [Google Scholar] [CrossRef]
- Liu, C.W.; Jean, M.D.; Wang, Q.T.; Chen, B.S. Optimization of residual stresses in laser-mixed WC (Co, Ni) coatings. Strength Mater. 2019, 51, 95–101. [Google Scholar] [CrossRef]
- Nagesh, D.S.; Datta, G.L. Prediction of weld bead geometry and penetration in shielded metal-arc welding using artificial neural networks. J. Mater. Process. Technol. 2002, 123, 303–312. [Google Scholar] [CrossRef]
- Wang, C.R.; Zhong, Z.Q.; Jean, M.D. Effect of ingredient proportions on mechanical properties in laser-coated WC-blend welds. Phys. Scr. 2024, 99, 035945. [Google Scholar] [CrossRef]
- Liu, M.; Duan, C.Z.; Li, G.H.; Cai, Y.J.; Wang, F.; Li, L. Multi-response optimization of Ni-based laser cladding via principal component analysis and grey relational analysis. Opt.-Int. J. Light Electron Opt. 2023, 287, 171122. [Google Scholar] [CrossRef]
- Zhou, Z.J.; Du, Y.B.; He, G.H.; Xu, L.; Shu, L.S. Optimization and characterization of laser cladding of 15-5PH coating on 20Cr13 stainless steel. J. Mater. Eng. Perform. 2023, 32, 962–977. [Google Scholar] [CrossRef]
- Gao, J.L.; Wang, C.; Hao, Y.B.; Liang, X.D.; Zhao, K. Prediction of TC11 single-track geometry in laser metal deposition based on back propagation neural network and random forest. J. Mech. Sci. Technol. 2022, 36, 1417–1425. [Google Scholar] [CrossRef]
- Chen, L.Y.; Yu, T.B.; Chen, X.; Zhao, Y.; Guan, C.A. Process optimization, microstructure, and microhardness of coaxial laser cladding TiC reinforced Ni-based composite coatings. Opt. Laser Technol. 2022, 152, 108129. [Google Scholar] [CrossRef]
- Saeedi, R.; Razavi, R.S.; Bakhshi, S.R.; Erfanmanesh, M.; Bani, A.A. Optimization and characterization of laser cladding of NiCr and NiCr-TiC composite coatings on AISI 420 stainless steel. Ceram. Int. 2021, 47, 4097–4110. [Google Scholar] [CrossRef]
- Fu, L.L.; Yang, J.S.; Li, S.; Luo, H.; Wu, J.H. Artificial neural network-based damage detection of composite material using laser ultrasonic technology. Measurement 2023, 220, 113435. [Google Scholar] [CrossRef]
- Mahmood, M.A.; Popescu, A.C.; Oane, M.; Channa, A.; Mihai, S.; Ristoscu, C.; Mihailescu, I.N. Bridging the analytical and artificial neural network models for keyhole formation with experimental verification in laser melting deposition: A novel approach. Results Phys. 2021, 26, 104440. [Google Scholar] [CrossRef]
- Chowdhury, S.; Anand, S. Artificial neural network-based geometric compensation for thermal deformation in additive manufacturing processes. In Proceedings of the International Manufacturing Science and Engineering Conference, Blacksburg, VA, USA, 27 June–1 July 2016. [Google Scholar] [CrossRef]
- Sudnik, W.; Radaj, D.; Erofeew, W. Computerized simulation of laser beam welding, modeling, and verification. J. Phys. D Appl. Phys. 1996, 29, 2811–2817. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Xu, Y.F.; Sun, Y.N.; Cheng, W.J. Surface quality optimization of laser cladding based on surface response and genetic neural network model. Surf. Topogr. Metrol. Prop. 2022, 10, 044007. [Google Scholar] [CrossRef]
- Genna, S.; Menna, E.; Rubino, G.; Trovalusci, F. Laser machining of silicon carbide: Experimental analysis and multi-objective optimization. Ceram. Int. 2023, 49, 10682–10691. [Google Scholar] [CrossRef]
Symbol | Weight of Element (wt%) | ||||||
---|---|---|---|---|---|---|---|
WC | W | C | Fe | Co | Cu | S | 60–100 |
98.3 | 1.3 | 0.0013 | 0.0005 | 0.0013 | 0.0015 | ||
Co | Co | Cu | Fe | Al | C | S | 40–150 |
99.9 | 0.05 | 0.065 | 0.05 | 0.02 | 0.009 | ||
Ni | Ni | Co | Fe | Al | C | S | 40–150 |
99.9 | 0.0013 | 0.0013 | 0.01 | 0.01 | 0.0015 |
No. of Tests | Substrate | Co% | Ni% | Preheat Temperature | Laser Power | Carrier Flowrate | Scanning Speed | Scanning Height | Wear Volume | S/N Ratio | |
---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | H | 10−4 mm3 | dB | ||
1 | 1 | 0 | 0 | 25 | 1000 | 1400 | 2 | 15 | 2.11 | 0.23 | 60.61 |
2 | 1 | 0 | 10 | 100 | 1400 | 1600 | 4 | 20 | 2.47 | 0.65 | 59.2 |
3 | 1 | 0 | 20 | 200 | 1800 | 1800 | 6 | 25 | 3.57 | 0.75 | 57.84 |
4 | 1 | 10 | 0 | 25 | 1400 | 1600 | 6 | 25 | 2.40 | 0.35 | 59.69 |
5 | 1 | 10 | 10 | 100 | 1800 | 1800 | 2 | 15 | 3.33 | 0.52 | 58.02 |
6 | 1 | 10 | 20 | 200 | 1000 | 1400 | 4 | 20 | 8.84 | 0.84 | 56.52 |
7 | 1 | 20 | 0 | 100 | 1000 | 1800 | 4 | 25 | 3.81 | 0.49 | 57.23 |
8 | 1 | 20 | 10 | 200 | 1400 | 1400 | 6 | 15 | 7.16 | 0.95 | 56.81 |
9 | 1 | 20 | 20 | 25 | 1800 | 1600 | 2 | 20 | 5.11 | 0.87 | 56.1 |
10 | 2 | 0 | 0 | 200 | 1800 | 1600 | 4 | 15 | 2.02 | 0.12 | 60.7 |
11 | 2 | 0 | 10 | 25 | 1000 | 1800 | 6 | 20 | 2.50 | 0.35 | 59.27 |
12 | 2 | 0 | 20 | 100 | 1400 | 1400 | 2 | 25 | 3.33 | 0.62 | 58.02 |
13 | 2 | 10 | 0 | 100 | 1800 | 1400 | 6 | 20 | 2.36 | 0.36 | 59.42 |
14 | 2 | 10 | 10 | 200 | 1000 | 1600 | 2 | 25 | 3.05 | 0.41 | 58.22 |
15 | 2 | 10 | 20 | 25 | 1400 | 1800 | 4 | 15 | 7.37 | 0.75 | 56.7 |
16 | 2 | 20 | 0 | 200 | 1400 | 1800 | 2 | 20 | 3.38 | 0.42 | 57.9 |
17 | 2 | 20 | 10 | 25 | 1800 | 1400 | 4 | 25 | 4.05 | 0.51 | 56.97 |
18 | 2 | 20 | 20 | 100 | 1000 | 1600 | 6 | 15 | 8.49 | 0.49 | 56.25 |
No. of Tests | Atomic Concentration (%) | ||||||
---|---|---|---|---|---|---|---|
W | C | O | Fe | Ni | Co | ||
WC | A | 85.1670 | 4.7740 | 0.8860 | 9.1930 | 0.0000 | 0.0000 |
B | 68.1220 | 2.7170 | 7.3380 | 21.7420 | 0.0000 | 0.0000 | |
C | 83.0990 | 5.2300 | 2.4120 | 3.2130 | 0.0000 | 0.0000 | |
WC/Ni | A | 86.2090 | 4.0230 | 5.8840 | 2.6240 | 0.2600 | 0.0000 |
B | 72.6080 | 4.8970 | 8.2480 | 12.6240 | 0.7810 | 0.0000 | |
C | 83.0870 | 5.0120 | 2.4120 | 4.6030 | 4.4900 | 0.0000 | |
WC/Co | A | 87.5160 | 4.4640 | 2.3100 | 4.6520 | 0.0000 | 0.7250 |
B | 65.2950 | 3.2300 | 14.2950 | 11.1480 | 0.0000 | 0.0920 | |
C | 76.5630 | 4.1310 | 5.6600 | 12.4020 | 0.0000 | 0.0810 | |
WC/Co/Ni | A | 87.2910 | 3.6670 | 4.1080 | 8.7000 | 3.7170 | 2.9060 |
B | 63.9650 | 3.2840 | 24.2120 | 5.5740 | 1.6560 | 1.2300 | |
C | 82.0270 | 4.5670 | 5.2750 | 4.7990 | 1.9350 | 1.4270 |
Symbol | Sum of Squares | Degree of Freedom | Mean Square | F-Test | Contribution Percent |
---|---|---|---|---|---|
A | 1.82 | 1 | 1.82 | 7.63 | 0.59 |
B | 108.36 | 2 | 54.18 | 226.6 | 34.82 |
C | 140.9 | 2 | 70.45 | 294.64 | 45.28 |
D | 3.17 | 2 | 1.58 | 6.64 | 1.02 |
E | 20.24 | 2 | 10.12 | 42.33 | 6.51 |
F | 9.56 | 2 | 4.78 | 20 | 3.07 |
G | 9.033 | 2 | 4.51 | 18.88 | 2.9 |
H | 17.59 | 2 | 8.79 | 36.78 | 5.65 |
Error | 0.47 | 2 | 0.23 | 1 | 0.15 |
Total | 311.18 | 17 | 100 |
Symbol | Degree of Freedom | Sum of Squares | Mean Square | F-Test | Prob > F | Adjust-R2 |
---|---|---|---|---|---|---|
First-order model | 4 | 70.54 | 17.63 | 20.49 | 0.0000 | 0.82 |
Interaction model | 10 | 76.23 | 7.62 | 9.71 | 0.0032 | 0.84 |
Second-order model | 14 | 77.86 | 5.56 | 4.31 | 0.1273 | 0.73 |
Source | Second-Order Model | Source | Interaction Model | ||||
---|---|---|---|---|---|---|---|
Coefficient | t- | Prob > F | Coefficient | t- | Prob > F | ||
Estimate | Statistic | Estimate | Statistic | ||||
Intercept | 9.0616 | 0.5790 | 0.6032 | Intercept | 12.3394 | 2.1465 | 0.0690 |
B | 0.3470 | 0.9442 | 0.4147 | B | 0.1530 | 0.8176 | 0.4405 |
C | 0.1333 | 0.3310 | 0.7624 | C | 0.4325 | 1.9486 | 0.0924 |
E | 0.0024 | 0.1687 | 0.8768 | E | −0.0046 | −1.3315 | 0.2248 |
H | −0.6669 | −0.5984 | 0.5918 | H | −0.6474 | −2.0972 | 0.0742 |
BC | −0.0011 | −0.1593 | 0.8835 | BC | −0.0034 | −0.7425 | 0.4819 |
BE | −0.0002 | −1.0098 | 0.3870 | BE | −0.0001 | −1.3688 | 0.2134 |
BH | 0.0138 | 0.9863 | 0.3967 | BH | 0.0095 | 1.0201 | 0.3416 |
CE | −0.0001 | −0.6562 | 0.5585 | CE | −0.0002 | −1.6971 | 0.1335 |
CH | 0.0093 | 0.6078 | 0.5862 | CH | −0.0005 | −0.0593 | 0.9544 |
EH | 0.0004 | 1.3075 | 0.2822 | EH | 0.0003 | 1.5289 | 0.1701 |
B2 | −0.0084 | −0.9502 | 0.4121 | Source | First-order model | ||
C2 | 0.0002 | 0.0236 | 0.9827 | Coefficient | t- | Prob > F | |
E2 | 0.0000 | −0.6321 | 0.5722 | Estimate | statistic | ||
H2 | −0.0063 | −0.2081 | 0.8485 | Intercept | 7.1378 | 4.7933 | 0.0004 |
B | 0.1348 | 5.0347 | 0.0002 | ||||
C | 0.1652 | 6.1673 | 0.0000 | ||||
E | −0.0019 | −2.8876 | 0.0127 | ||||
H | −0.1713 | −3.1988 | 0.0070 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.-D.; Jean, M.-D. The Influence of Mechanical Properties of Laser-Melted Tungsten Carbide Composite with Nickel/Cobalt Ingredients. Materials 2024, 17, 5636. https://doi.org/10.3390/ma17225636
Wang X-D, Jean M-D. The Influence of Mechanical Properties of Laser-Melted Tungsten Carbide Composite with Nickel/Cobalt Ingredients. Materials. 2024; 17(22):5636. https://doi.org/10.3390/ma17225636
Chicago/Turabian StyleWang, Xiao-Dong, and Ming-Der Jean. 2024. "The Influence of Mechanical Properties of Laser-Melted Tungsten Carbide Composite with Nickel/Cobalt Ingredients" Materials 17, no. 22: 5636. https://doi.org/10.3390/ma17225636
APA StyleWang, X. -D., & Jean, M. -D. (2024). The Influence of Mechanical Properties of Laser-Melted Tungsten Carbide Composite with Nickel/Cobalt Ingredients. Materials, 17(22), 5636. https://doi.org/10.3390/ma17225636