The Effect of the Pyrolysis Temperature of a Leather–Textile Mixture from Post-Consumer Footwear on the Composition and Structure of Carbonised Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Physico-Chemical Parameters of Waste and Carbonised Materials
2.2. The Process of Pyrolysis
2.3. Elemental Composition and Identification of Functional Groups
2.4. Morphology, Structure, and Surface Formation
3. Results and Discussion
3.1. Pyrolysis of Waste Leather–Textile Mixtures
3.2. The Composition and Structure of Carbonised Materials
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghimouz, C.; Kenné, J.P.; Hof, L.A. On sustainable design and manufacturing for the footwear industry—Towards circular manufacturing. Mater. Des. 2023, 233, 112224. [Google Scholar] [CrossRef]
- Firtikiadis, L.; Manavis, A.; Kyratsis, P.; Efkolidis, N. Product design trends within the footwear industry: A review. Designs 2024, 8, 49. [Google Scholar] [CrossRef]
- The World Footwear 2023 Yearbook, 30 June 2023. Available online: https://www.worldfootwear.com/news/the-world-footwear-2023-yearbook/8981.html (accessed on 7 November 2024).
- Lee, M.J.; Rahimifard, S. An air-based automated material recycling system for postconsumer footwear products. Resour. Conserv. Recycl. 2012, 69, 90–99. [Google Scholar] [CrossRef]
- Han-Ching, W. Shoe Sole Made of Recycled Shoes. U.S. Patent 2012/0144702 A1, 14 June 2012. [Google Scholar]
- Lin, M. Method for Recycling Waste Shoe Soles and a Laminate Made According to the Method. U.S. Patent 2011/0183559 A1, 28 July 2011. [Google Scholar]
- Bashpa, P.; Bijudas, K.; Dileep, P.; Elanthikkal, S.; Francis, T. Reutilization of polyurethane-based shoe sole scrap as a reinforcing filler in natural rubber for the development of high-performance composites. J. Elastomers Plast. 2022, 54, 1040–1060. [Google Scholar] [CrossRef]
- Guchait, A.; Maity, D.; Sabnis, A.S. Recycling of waste polyurethane shoe sole via aminolysis route. J. Mater. Cycles Waste Manag. 2024, 26, 860–871. [Google Scholar] [CrossRef]
- Syguła, E.; Świechowski, K.; Hejna, M.; Kunaszyk, I.; Białowiec, A. Municipal solid waste thermal analysis—Pyrolysis kinetics and decomposition reactions. Energies 2021, 14, 4510. [Google Scholar] [CrossRef]
- Tang, K.H.D. State of the art in textile waste management: A review. Textiles 2023, 3, 454–467. [Google Scholar] [CrossRef]
- Stejskal, J.; Ngwabebhoh, F.A.; Sáha, P.; Prokeš, J. Carbonized leather waste: A review and conductivity outlook. Polymers 2023, 15, 1028. [Google Scholar] [CrossRef]
- Puchana-Rosero, M.J.; Adebayo, M.A.; Lima, E.C.; Machado, F.M.; Thue, P.S.; Vaghetti, J.C.P.; Umpierres, C.S.; Gutterres, M. Microwave-assisted activated carbon obtained from the sludge of tannery-treatment effluent plant for removal of leather dyes. Colloids Surf. A Physicochem. Eng. Asp. 2016, 504, 105–115. [Google Scholar] [CrossRef]
- Arcibar-Orozco, J.A.; Barajas-Elias, B.S.; Caballero-Briones, F.; Nielsen, L.; Rangel- Mendez, J.R. Hybrid carbon nanochromium composites prepared from chrome-tanned leather shavings for dye adsorption. Water Air Soil Pollut. 2019, 230, 142. [Google Scholar] [CrossRef]
- Mella, B.; Benvenuti, J.; Oliveira, R.F.; Gutterres, M. Preparation and characterization of activated carbon produced from tannery solid waste applied for tannery wastewater treatment. Environ. Sci. Pollut. Res. 2019, 26, 6811–6817. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Ma, H.; Gao, M.; Sun, W.; Zhu, C.; Chen, X. Changes of chromium speciation and organic matter during low-temperature pyrolysis of tannery sludge. Environ. Sci. Pollut. Res. 2018, 25, 2495–2505. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, F.; Montoya-Ruiz, C.; Estiati, I.; Saldarriaga, J.F. Removal of drugs in polluted waters with char obtained by pyrolysis of hair waste from the tannery process. ACS Omega 2020, 5, 24389–24402. [Google Scholar] [CrossRef]
- Venkatesan, N.; Krishna, A.; Fathima, N.N. Leather solid waste derived activated carbon as a potential material for various applications: A review. J. Anal. Appl. Pyrolysis 2023, 176, 106249. [Google Scholar] [CrossRef]
- Cabrera-Codony, A.; Ruiz, B.; Gil, R.R.; Popartan, L.A.; Santos-Clotas, E.; Martín, M.J.; Fuente, E. From biocollagenic waste to efficient biogas purification: Applying circular economy in the leather industry. Environ. Technol. Innov. 2021, 21, 101229. [Google Scholar] [CrossRef]
- Kuligowski, K.; Cenian, A.; Konkol, I.; Świerczek, L.; Chojnacka, K.; Izydorczyk, G.; Skrzypczak, D.; Bandrów, P. Application of leather waste fractions and their biochars as organic fertilisers for ryegrass growth: Agri-environmental aspects and plants response modelling. Energies 2023, 16, 3883. [Google Scholar] [CrossRef]
- Han, W.; Wang, H.; Xia, K.; Chen, S.; Yan, P.; Deng, T.; Zhu, W. Superior nitrogen doped activated carbon materials for water cleaning and energy storing prepared from renewable leather wastes. Environ. Int. 2020, 142, 105846. [Google Scholar] [CrossRef]
- Adamkiewicz, J.; Kochańska, E.; Adamkiewicz, I.; Łukasik, R.M. Greenwashing and sustainable fashion industry. Curr. Opin. Green Sustain. Chem. 2022, 38, 100710. [Google Scholar] [CrossRef]
- Lee, H.S.; Jung, S.; Lin, K.Y.A.; Kwon, E.E.; Lee, J. Upcycling textile waste using pyrolysis process. Sci. Total Environ. 2023, 859, 160393. [Google Scholar] [CrossRef]
- Xu, Z.; Sun, Z.; Zhou, Y.; Chen, W.; Zhang, T.; Huang, Y.; Zhang, D. Insights into the pyrolysis behavior and adsorption properties of activated carbon from waste cotton textiles by FeCl3-activation. Colloids Surf. A Physicochem. Eng. Asp. 2019, 582, 123934. [Google Scholar] [CrossRef]
- Parmakoğlu, E.Ü.; Çay, A.; Yanık, J. Valorization of solid wastes from textile industry as an adsorbent through activated carbon production. AATCC J. Res. 2023, 10, 133–143. [Google Scholar] [CrossRef]
- Yu, X.; Wang, S.; Zhang, J. Preparation of high adsorption performance activated carbon by pyrolysis of waste polyester fabric. J. Mater. Sci. 2018, 53, 5458–5466. [Google Scholar] [CrossRef]
- Boudrahem, N.; Delpeux-Ouldriane, S.; Khenniche, L.; Boudrahem, F.; Aissani-Benissad, F.; Gineys, M. Single and mixture adsorption of clofibric acid, tetracycline and paracetamol onto activated carbon developed from cotton cloth residue. Process Saf. Environ. Prot. 2017, 111, 544–559. [Google Scholar] [CrossRef]
- Sayed Jamaludin, S.I.; Zaini, M.A.A.; Sadikin, A.Z.; Jani, W.N.F.A. Textile waste valorization as potential activated carbon precursor for the removal of water contaminants: Commentary. Mater. Today Proc. 2024, 96, 110–115. [Google Scholar] [CrossRef]
- PN-EN ISO 18134-2:2017-03; Solid Biofuels—Determination of Moisture Content—Drying Method—Part 2: Total Moisture—Simplified Method. ISO: Geneva, Switzerland, 2017.
- PN-ISO 1171:2002; Solid Fuels—Ash Determination. ISO: Geneva, Switzerland, 2002.
- ISO 18125:2017; Solid Biofuels—Determination of Calorific Value. ISO: Geneva, Switzerland, 2017.
- El-Hout, S.I.; Attia, S.Y.; Mohamed, S.G.; Abdelbasir, S.M. From waste to value-added products: Evaluation of activated carbon generated from leather waste for supercapacitor applications. J. Environ. Manag. 2022, 304, 114222. [Google Scholar] [CrossRef]
- Diamadopoulos, E.; Samaras, P.; Sakellaropoulos, G.P. The effect of activated carbon properties on the adsorption of toxic substances. Water Sci. Technol. 1992, 25, 153–160. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, X.; Zhang, P.; Gao, H.; Ou, C.; Kong, X. Production of activated carbons from four wastes via one-step activation and their applications in Pb2+ adsorption: Insight of ash content. Chemosphere 2020, 245, 125587. [Google Scholar] [CrossRef]
- Kajda-Szcześniak, M.; Ścierski, W. Studies on the migration of sulphur and chlorine in the pyrolysis products of floor and furniture joinery. Energies 2023, 16, 7446. [Google Scholar] [CrossRef]
- Ferreira, S.D.; Manera, C.; Silvestre, W.P.; Pauletti, G.F.; Altafini, C.R.; Godinho, M. Use of biochar produced from elephant grass by pyrolysis in a screw reactor as a soil amendment. Waste Biomass Valorization 2019, 10, 3089–3100. [Google Scholar] [CrossRef]
- Younas, H.; Nazir, A.; Bareen, F. Management of tannery solid waste (TSW) through pyrolysis and characteristics of its derived biochar. Pol. J. Environ. Stud. 2021, 30, 453–462. [Google Scholar] [CrossRef]
- Skrzypczak, D.; Szopa, D.; Mikula, K.; Izydorczyk, G.; Baśladyńska, S.; Hoppe, V.; Pstrowska, K.; Wzorek, Z.; Kominko, H.; Kułażyński, M.; et al. Tannery waste-derived biochar as a carrier of micronutrients essential to plants. Chemosphere 2022, 294, 133720. [Google Scholar] [CrossRef] [PubMed]
- Cole, E.J.; Zandvakili, O.R.; Xing, B.; Hashemi, M.; Herbert, S.; Mashayekhi, H.H. Dataset on the effect of hardwood biochar on soil gravimetric moisture content and nitrate dynamics at different soil depths with FTIR analysis of fresh and aged biochar. Data Brief 2019, 25, 104073. [Google Scholar] [CrossRef] [PubMed]
- Wystalska, K.; Kwarciak-Kozłowska, A. The Effect of biodegradable waste pyrolysis temperatures on selected biochar properties. Materials 2021, 14, 1644. [Google Scholar] [CrossRef]
- Wen, C.; Wu, Y.; Chen, X.; Jiang, G.; Liu, D. The pyrolysis and gasification performances of waste textile under carbon dioxide atmosphere. J. Therm. Anal. Calorim. 2017, 128, 581–591. [Google Scholar] [CrossRef]
- Mori, F.; Kubouchi, M.; Arao, Y. Effect of graphite structures on the productivity and quality of few-layer graphene in liquid-phase exfoliation. J. Mater. Sci. 2018, 53, 12807–12815. [Google Scholar] [CrossRef]
- Venkatesan, N.; Kesavan, T.; Raja, M.; Ramanujam, K.; Fathima, N.N. Efficient electrochemical performance of nitrogen-doped porous activated carbon for high energy symmetric pouch cell supercapacitors. J. Energy Storage 2022, 55, 105698. [Google Scholar] [CrossRef]
- Chatterjee, R.; Sajjadi, B.; Chen, W.-Y.; Mattern, D.L.; Hammer, N.; Raman, V.; Dorris, A. Effect of pyrolysis temperature on physicochemical properties and acoustic-based amination of biochar for efficient CO2 adsorption. Front. Energy Res. 2020, 8, 85. [Google Scholar] [CrossRef]
- Major, I.; Pin, J.-M.; Behazin, E.; Rodriguez-Uribe, A.; Misra, M.; Mohanty, A. Graphitization of miscanthus grass biocarbon enhanced by in situ generated FeCo nanoparticles. Green Chem. 2018, 20, 2269–2278. [Google Scholar] [CrossRef]
- Vyas, A.; Chellappa, T.; Goldfarb, J.L. Porosity development and reactivity changes of coal–biomass blends during co-pyrolysis at various temperatures. J. Anal. Appl. Pyrolysis 2017, 124, 79–88. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.; Olivier, J.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Molenda, J.; Pawelec, Z. Biocarbons from waste plant biomass as additives to plastic lubricants. Przemysł Chem. 2021, 100, 350–352. [Google Scholar] [CrossRef]
- Dasiewicz, J.; Pawelec, Z.; Wolszczak, M. Polymer Composite. Patent PL381751A1, 18 August 2008. [Google Scholar]
- Schäl, P.; Juhász Junger, I.; Grimmelsmann, N.; Ehrmann, A. Development of graphite-based conductive textile coatings. J. Coat. Technol. Res. 2018, 15, 875–883. [Google Scholar] [CrossRef]
- Chojnacka, K.; Skrzypczak, D.; Mikula, K.; Witek-Krowiak, A.; Izydorczyk, G.; Kuligowski, K.; Bandrów, P.; Kułażyński, M. Progress in sustainable technologies of leather wastes valorization as solutions for the circular economy. J. Clean. Prod. 2021, 313, 127902. [Google Scholar] [CrossRef]
- Wells, H.C.; Sizeland, K.H.; Edmonds, R.L.; Aitkenhead, W.; Kappen, P.; Glover, C.; Johannessen, B.; Haverkamp, R.G. Stabilizing chromium from leather waste in biochar. ACS Sustain. Chem. Eng. 2014, 2, 1864–1870. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Moisture content [%] | 0.512 ± 0.016 |
Dry mass [%] | 99.488 ± 0.016 |
Ash content [%] * | 6.590 ± 0.270 |
Gross calorific value [MJ/kg] | 24.89 ± 0.18 |
Net calorific value [MJ/kg] | 23.61 ± 0.18 |
Pyrolysis Temperature [°C] | Carbonised Material Yield [wt.%] |
---|---|
500 | 23.0 ± 1.1 |
600 | 22.63 ± 0.55 |
700 | 21.56 ± 0.46 |
800 | 18.12 ± 0.98 |
Parameter | Sample Type | |||
---|---|---|---|---|
C500 | C600 | C700 | C800 | |
Moisture content [%] | 0.544 ± 0.005 | 0.703 ± 0.011 | 1.610 ± 0.036 | 4.477 ± 0.074 |
Dry mass [%] | 99.456 ± 0.005 | 99.297 ± 0.011 | 98.390 ± 0.036 | 95.523 ± 0.074 |
Ash content [%] * | 29.520 ± 0.036 | 31.667 ± 0.079 | 27.697 ± 0.079 | 26.52 ± 0.17 |
Gross calorific value [MJ/kg] | 16.56 ± 0.16 | 16.54 ± 0.13 | 17.18 ± 0.09 | 16.38 ± 0.31 |
Net calorific value [MJ/kg] | 16.04 ± 0.16 | 16.13 ± 0.12 | 16.86 ± 0.09 | 16.00 ± 0.31 |
Sample Type | Elemental Composition [wt.%] | |||||
---|---|---|---|---|---|---|
C | H | N | S | Cl | O * | |
Feedstock | 59.39 ± 0.77 | 5.86 ± 0.22 | 1.11 ± 0.06 | 0.013 ± 0.007 | 0.041 ± 0.008 | 33.59 |
C500 | 50.21 ± 0.14 | 2.24 ± 0.10 | 1.79 ± 0.07 | 0.121 ± 0.004 | 0.043 ± 0.004 | 45.59 |
C600 | 48.43 ± 0.12 | 1.62 ± 0.03 | 1.74 ± 0.01 | 0.127 ± 0.006 | 0.049 ± 0.003 | 48.03 |
C700 | 54.43 ± 0.02 | 1.17 ± 0.04 | 1.79 ± 0.05 | 0.101 ± 0.010 | 0.035 ± 0.003 | 42.47 |
C800 | 55.81 ± 0.08 | 1.14 ± 0.01 | 1.76 ± 0.02 | 0.098 ± 0.009 | 0.016 ± 0.002 | 41.18 |
Sample Type | Metal Content [mg/kg] * | ||||||
---|---|---|---|---|---|---|---|
Cr | Fe | Na | K | Zn | Mg | Ca | |
C500 | 396.1 ± 7.7 | 633.7 ± 5.5 | 661.2 ± 3.6 | 322.4 ± 6.7 | 1591 ± 16 | 5243 ± 91 | 107,645 ± 394 |
C600 | 433.9 ± 8.7 | 698 ± 18 | 660.4 ± 8.0 | 381 ± 12 | 1175 ± 68 | 5468 ± 109 | 118,912 ± 1639 |
C700 | 344.4 ± 5.7 | 651.9 ± 4.1 | 730 ± 37 | 345.0 ± 3.6 | 727.5 ± 1.2 | 5185 ± 20 | 117,191 ± 2859 |
C800 | 330.6 ± 2.5 | 574.4 ± 4.3 | 608 ± 26 | 388 ± 10 | 538.9 ± 2.8 | 5198 ± 92 | 100,803 ± 2321 |
Pyrolysis Temperature [°C] | SMBET [m2/g] | Total Pore Volume [cm2/g] | Micropore Volume [cm2/g] | Mesopore Volume [cm2/g] | Fraction of Micropores [%] | Fraction of Mesopores [%] |
---|---|---|---|---|---|---|
500 | 94 | 0.087 | 0.017 | 0.070 | 19.54 | 80.46 |
600 | 178 | 0.127 | 0.046 | 0.081 | 36.22 | 63.78 |
700 | 194 | 0.152 | 0.045 | 0.107 | 29.61 | 70.39 |
800 | 217 | 0.121 | 0.065 | 0.056 | 53.72 | 46.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowalik-Klimczak, A.; Łożyńska, M.; Życki, M.; Woźniak, B. The Effect of the Pyrolysis Temperature of a Leather–Textile Mixture from Post-Consumer Footwear on the Composition and Structure of Carbonised Materials. Materials 2024, 17, 5649. https://doi.org/10.3390/ma17225649
Kowalik-Klimczak A, Łożyńska M, Życki M, Woźniak B. The Effect of the Pyrolysis Temperature of a Leather–Textile Mixture from Post-Consumer Footwear on the Composition and Structure of Carbonised Materials. Materials. 2024; 17(22):5649. https://doi.org/10.3390/ma17225649
Chicago/Turabian StyleKowalik-Klimczak, Anna, Monika Łożyńska, Maciej Życki, and Bogusław Woźniak. 2024. "The Effect of the Pyrolysis Temperature of a Leather–Textile Mixture from Post-Consumer Footwear on the Composition and Structure of Carbonised Materials" Materials 17, no. 22: 5649. https://doi.org/10.3390/ma17225649
APA StyleKowalik-Klimczak, A., Łożyńska, M., Życki, M., & Woźniak, B. (2024). The Effect of the Pyrolysis Temperature of a Leather–Textile Mixture from Post-Consumer Footwear on the Composition and Structure of Carbonised Materials. Materials, 17(22), 5649. https://doi.org/10.3390/ma17225649