Analysis of Influence of Coating Type on Friction Behaviour and Surface Topography of DC04/1.0338 Steel Sheet in Bending Under Tension Friction Test
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Material
2.2. Friction Testing
2.3. Preparation of Countersamples
2.3.1. Ti-HIPP Countersamples
Parameter | Value |
---|---|
material of electrodes | Ti |
working gas | He |
pulse duration | 5 µs |
number of plasma pulses | 2 × 3 |
average pulse energy density | 4 J/cm2 |
distance between electrodes and modified surface | 25 cm |
2.3.2. TiN-MS Countersamples
- Material of the target: Ti (thickness of 6 mm),
- Working gas: Ar (pressure of 0.7 Pa)
- Total pressure of Ar+N2: 0.742 Pa,
- Effective power: 2500 W,
- Modulation frequency: 1000 Hz,
- Distance between the target and modified surface: 8 cm,
- Processing time: 2 × 35 min,
- Estimated temperature on the stage: 120 °C = cold substrate during the synthesis process,
- Thickness of the deposited layer: 800 nm.
2.3.3. Ti-MS+EPI Countersamples
- Material of the target: Ti (thickness of 6 mm),
- Working gas: Ar (pressure of 0.7 Pa),
- Effective power: 2500 W,
- Modulation frequency: 1000 Hz,
- Distance between the target and modified surface: 8 cm,
- Processing time: 2 × 15 min,
- Estimated temperature of the modified countersample: 120 °C,
- Thickness of the deposited layer: 800 nm.
- Working gas: Ar of 99.999% purity,
- Number of pulses: 3 × 1,
- Pulse duration: 2 µs,
- Acceleration of the voltage in peak/electron energy: 25 kV/25 keV,
- Pulse energy density: 2.44, 3.18, 3.31 J/cm2.
2.4. Characteristics of Countersamples
3. Results and Discussion
3.1. Coefficient of Friction
3.2. Surface Roughness
3.3. Temperature
4. Conclusions
- During dry friction, the uncoated countersamples caused the largest change in the average roughness Sa.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jaghan, H.D.; Hahn, M.; Sehrt, J.T.; Tekkaya, A.E. Hybrid additive manufacturing of metal laminated forming tools. CIRP Ann. 2022, 71, 225–228. [Google Scholar] [CrossRef]
- Bang, J.; Song, J.; Bae, G.; Park, N.; Lee, M.; Kim, H. Quantitative evaluation of experimental wear behaviour for CrN-coated tool steels in sheet metal forming process of TRIP 1180. Procedia Manuf. 2020, 50, 791–794. [Google Scholar] [CrossRef]
- Neto, D.M.; Coër, J.; Oliveira, M.C.; Alves, J.L.; Manach, P.Y.; Menezes, L.F. Numerical analysis on the elastic deformation of the tools in sheet metal forming processes. Int. J. Solids Struct. 2016, 100–101, 270–285. [Google Scholar] [CrossRef]
- Lepadatu, D.; Hambli, R.; Kobi, A.; Barreau, A. Tool life prediction in metal forming processes using numerical analysis. IFAC Proc. Vol. 2004, 37, 287–291. [Google Scholar] [CrossRef]
- Karafilis, A.P.; Boyce, M.C. Tooling and binder design for sheet metal forming processes compensating springback error. Int. J. Mach. Tools Manuf. 1996, 36, 503–526. [Google Scholar] [CrossRef]
- Trzepieciński, T. Approaches for preventing tool wear in sheet metal forming processes. Machines 2023, 11, 616. [Google Scholar] [CrossRef]
- Żaba, K.; Kuczek, Ł.; Puchlerska, S.; Wiewióra, M.; Góral, M.; Trzepieciński, T. Analysis of tribological performance of new stamping die composite inserts using strip drawing test. Adv. Mech. Mater. Eng. 2023, 40, 55–62. [Google Scholar] [CrossRef]
- Cuo, J.; Brinksmeier, E.; Fu, M.; Gao, R.X.; Liang, B.; Merklein, M.; Schmidt, M.; Yanagimoto, J. Manufacturing of advanced smart tooling for metal forming. CIRP Ann. 2019, 68, 605–628. [Google Scholar] [CrossRef]
- Majstorovic, V.D.; Vukadinovic, V.; Zivkovic, J. Towards the digital model of tool lifecycle management in sheet metal forming. J. Mach. Eng. 2023, 23, 141–166. [Google Scholar] [CrossRef]
- Geueke, M.; Steinheimer, R.; Frohn-Sörensen, P.; Schiller, M.; Engel, B. Sustainable tool technology: Wood-based forming tools for deep drawing of sheet metal. IOP Conf. Ser. Mater. Sci. Eng. 2024, 1307, 012018. [Google Scholar] [CrossRef]
- Mokrzycka, M.; Przybyło, A.; Góral, M.; Kościelniak, B.; Drajewicz, M.; Kubaszek, T.; Gancarczyk, K.; Gradzik, A.; Dychtoń, K.; Poręba, M.; et al. The influence of plasma nitriding process conditions on the microstructure of coatings obtained on the substrate of selected tool steels. Adv. Mech. Mater. Eng. 2024, 41, 5–16. [Google Scholar] [CrossRef]
- Thakur, A.; Gangopadhyay, S. Influence of tribological properties on the performance of uncoated, CVD and PVD coated tools in machining of Incoloy 825. Tribol. Int. 2016, 102, 198–212. [Google Scholar] [CrossRef]
- Sun, L.; Yuan, G.; Gao, L.; Yang, J.; Chhowalla, M.; Gharahcheshmeh, M.H.; Gleason, K.K.; Choi, Y.S.; Hong, B.H.; Liu, Z. Chemical vapour deposition. Nat. Rev. Methods Primers 2021, 1, 5. [Google Scholar] [CrossRef]
- Ziaja, J. Thin layer metallic and oxide structures. properties, technology, electrotechnics applications; Publishing House of the Wrocław University of Science and Technology: Wroclaw, Poland, 2012. [Google Scholar]
- Xavier, R.; Sivaperuman, K. Review on the of physical vapor deposition on imminent chemiresistive metal oxide gas sensors and their future scope. Mater. Today Commun. 2024, 38, 107831. [Google Scholar] [CrossRef]
- Jeon, C.Y. Tribological Characteristics of TiC, TiN and TiC/TiN Coatings. J. Kor. Acad.- Ind. Coop. Soc. 2014, 15, 1253–1258. [Google Scholar]
- Bunshah, R.F. Processes of the activated reactive evaporation type and their tribological applications. Thid Solid. Film. 1983, 107, 21–38. [Google Scholar] [CrossRef]
- Dobrzański, L.A.; Gołombek, K.; Lukaszkowicz, K. Physical Vapor Deposition in Manufacturing. In Handbook of Manufacturing Engineering and Technology; Nee, A., Ed.; Springer: London, UK, 2015. [Google Scholar]
- Zdunek, K. Combined impulse-stationary impulse plasma deposition. Surf. Coat. Technol. 1998, 98, 1448–1454. [Google Scholar] [CrossRef]
- Baptista, A.; Silva, F.J.G.; Porteiro, J.; Míguez, J.L.; Pinto, G.; Fernandes, L. On the Physical Vapour Deposition (PVD): Evolution of Magnetron Sputtering Processes for Industrial Applications. Procedia Manuf. 2018, 17, 746–757. [Google Scholar] [CrossRef]
- Bundesmann, C.; Neumann, H. Tutorial: The systematics of ion beam sputtering for deposition of thin films with tailored properties. J. Appl. Phys. 2018, 124, 231102. [Google Scholar] [CrossRef]
- Bielawski, M. Application of electron beam in surface layer modification technology. In Proceedings of the Scientific and Technical Conference on the Technique of Manufacturing Surface Layers of Metals, Rzeszów, Poland, 9–10 June 1988; pp. 126–134. [Google Scholar]
- Lisha, F.; Fan, L.; Guolong, W.; Kovalenko, V.S.; Jianhua, Y. Research progress of laser-assisted chemical vapor deposition. Opto-Electron. Eng. 2022, 49, 210333. [Google Scholar]
- Saunders, J.; Elbestawi, M.; Fang, Q. Ultrafast Laser Additive Manufacturing: A Review. J. Manuf. Mater. Process. 2023, 7, 89. [Google Scholar] [CrossRef]
- Kelly, P.J.; Arnell, R.D. Magnetron sputtering: A review of recent developments and applications. Vacuum 2000, 56, 159–172. [Google Scholar] [CrossRef]
- Li, X.; Bakhit, B.; Joesaar, M.P.J.; Hultman, L.; Petrov, I.; Greczynski, G. Toward energy-efficient physical vapor deposition: Routes for replacing substrate heating during magnetron sputter deposition by employing metal ion irradiation. Surf. Coat. Technol. 2021, 415, 127120. [Google Scholar] [CrossRef]
- Ovcharenko, V.E.; Ivanov, Y.F. Effect of electron pulse irradiation on the microstructure of the surface layer of a cermet. Met. Metal. Sci. Heat. Treat. 2008, 50, 359–363. [Google Scholar] [CrossRef]
- Baohai, Y.; Ovcharenko, V.E.; Psakhie, S.G.; Lapshin, O.V. Electron-beam treatment of tungsten-free TiC/NiCr cermet. II: Structural transformation in the subsurface layer. J. Mater. Sci. Technol. 2006, 22, 511–513. [Google Scholar]
- Bang, J.; Park, N.; Song, J.; Kim, H.-G.; Bae, G.; Lee, M.-G. Tool wear prediction in the forming of automotive DP980 steel sheet using statistical sensitivity analysis and accelerated u-bending based wear test. Metals 2021, 11, 306. [Google Scholar] [CrossRef]
- Podgornik, B.; Leskovšek, V. Wear mechanisms and surface engineering of forming tools. Mater. Technol. 2015, 49, 313–332. [Google Scholar]
- Stoiber, M.; Panzenbock, M.; Mitterer, C.; Lugmair, C. Fatigue properties of Ti-based hard coatings deposited onto tool steels. Surf. Coat. Technol. 2001, 142–144, 117–124. [Google Scholar] [CrossRef]
- Trzepiecinski, T. A study of the coefficient of friction in steel sheets forming. Metals 2019, 9, 988. [Google Scholar] [CrossRef]
- Fejkiel, R.; Goleń, P. Application of the finite element method to simulate the friction phenomenon in a strip drawing test. Adv. Mech. Mater. Eng. 2023, 40, 39–46. [Google Scholar] [CrossRef]
- Slota, J.; Kaščák, Ľ.; Lăzărescu, L. Frictional characteristics of EN AW-6082 aluminium alloy sheets used in metal forming. Adv. Mech. Mater. Eng. 2024, 41, 79–87. [Google Scholar] [CrossRef]
- Oraon, M. Tool wear in the single point incremental forming. Mater. Today Proc. 2022, 56, 1738–1742. [Google Scholar] [CrossRef]
- Trzepieciński, T.; Fejkiel, R. On the influence of deformation of deep drawing quality steel sheet on surface topography and friction. Tribol. Int. 2017, 115, 78–88. [Google Scholar] [CrossRef]
- EN ISO 6892-1:2019; Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature. International Organization for Standardization: Geneva, Switzerland, 2019.
- ISO 25178-2:2021; Geometrical Product Specifications (GPS)—Surface Texture: Areal—Part 2: Terms, Definitions and Surface Texture Parameters. International Organization for Standardization: Geneva, Switzerland, 2021.
- Duncan, J.L.; Shabel, B.S.; Filho, J.G. A Tensile Strip Test for Evaluating Friction in Sheet Metal Forming; 780391; SAE Technical Paper; SAE International: Pittsburgh, PA, USA, 1978. [Google Scholar] [CrossRef]
- Ezugwu, E.O.; Okeke, C.I. Tool life and wear mechanisms of TiN coated tools in an intermittent cutting operation. J. Mater. Proc. Technol. 2001, 116, 10–15. [Google Scholar] [CrossRef]
- Barlak, M.; Chmielewski, M.; Werner, Z.; Konarski, P.; Pietrzak, K.; Strojny-Nędza, A. Changes of tribological properties of Inconel 600 after ion implantation process. Bull. Pol. Acad. Sci. Techn. Sci. 2014, 62, 827–833. [Google Scholar] [CrossRef]
- Chmielewski, M.; Barlak, M.; Pietrzak, K.; Kaliński, D.; Kowalska, E.; Strojny-Nędza, A. Tribological effects of ion implantation of Inconel 600. Nukleon 2012, 57, 357–362. [Google Scholar]
- Barlak, M. High Intensity Plasma Pulses in Ceramic Wettability Improvement; Instytut Problemów Jadrowych im. Andrzeja Sołtana: Otwock, Poland, 2010. [Google Scholar]
- Werner, Z.; Pochrybniak, C.; Barlak, M.; Gosk, J.; Szczytko, J.; Twardowski, A.; Siwek, A. Magnetic properties of manganese implanted silicon after pulse plasma annealing. Vacuum 2013, 89, 113–117. [Google Scholar] [CrossRef]
- Barlak, M.; Piekoszewski, J.; Werner, Z.; Stanislawski, J.; Skladnik-Sadowska, E.; Borkowska, K.; Miskiewicz, M.; Kolitsch, A.; Grötzschel, R.; Starosta, W.; et al. Wettability improvement of carbon ceramic materials by mono and multi energy plasma pulses. Surf. Coat. Technol. 2009, 203, 2536–2540. [Google Scholar] [CrossRef]
- Barlak, M.; Wilkowski, J.; Werner, Z.; Podziewski, P. The wettability of nitrogen and argon implanted WC-Co indexable knives used for wood-based material machining. Ann. Wars. Univ. Life Sci. SGGW Forest. Wood Technol. 2023, 122, 27–35. [Google Scholar] [CrossRef]
- Okrasa, S.; Wilczopolska, M.; Strzelecki, G.; Nowakowska-Langier, K.; Chodun, R.; Minikayev, R.; Król, K.; Skowroński, L.; Namyślak, K.; Wicher, B.; et al. The influence of thermal stability on the properties of Cu3N layers synthesized by pulsed magnetron sputtering method. Thin Solid. Film. 2021, 735, 138889. [Google Scholar] [CrossRef]
- Zdunek, K.; Skowroński, Ł.; Chodun, R.; Nowakowska-Langier, K.; Grabowski, A.; Wachowiak, W.; Okrasa, S.; Wachowiak, A.; Strauss, O.; Wronkowski, A.; et al. Novel GIMS technique for deposition of colored Ti/TiO2 coatings on industrial scale. Mater. Sci. Pol. 2016, 34, 137–141. [Google Scholar] [CrossRef]
- Chodun, R.; Skowronski, L.; Okrasa, S.; Wicher, B.; Nowakowska-Langier, K.; Zdunek, K. Optical TiO2 layers deposited on polymer substrates by the Gas Injection Magnetron Sputtering technique. Appl. Surf. Sci. 2019, 466, 12–18. [Google Scholar] [CrossRef]
- Ścigała, A.; Szłyk, E.; Dobrzańska, L.; Gregory, D.H.; Szczęsny, R. From binary to multinary copper based nitrides—Unlocking the potential of new applications. Coord. Chem. Rev. 2021, 436, 213791. [Google Scholar] [CrossRef]
- Fallberg, A.; Ottosson, M.; Carlsson, J.O. CVD of Copper (I) Nitride. Chem. Vapor. Depos. 2009, 15, 300–305. [Google Scholar] [CrossRef]
- Powell, C.F.; Oxley, J.H.; Blocher, J.M., Jr.; Klere, J. Vapor Deposition. J. Electrochem. Soc. 1966, 113, 266C–269C. [Google Scholar] [CrossRef]
- Ozur, G.E.; Proskurovsky, D.I.; Rotshtein, V.P.; Markov, A.B. Production and application of low-energy, high-current electron beams. Laser Part. Beams 2003, 21, 157–174. [Google Scholar] [CrossRef]
- Werner, Z.; Barlak, M.; Ratajczak, R.; Konarski, P.; Markov, A.M.; Heller, R. Electron-beam pulse annealed Ti-implanted GaP. J. Appl. Phys. 2016, 120, 085103. [Google Scholar] [CrossRef]
- Konings, R.J.M. Comprehensive Nuclear Materials; Elsevier Inc.: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Martin, P.M. Handbook of Deposition Technologies for Films and Coatings, 3rd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2010. [Google Scholar]
- George, E.; Kurien, G.E.; Vishal, U.; Anil, P.M. A study on the effect of oil pocket density on the effectiveness of boundary lubrication in the liner-ring interface. Procedia Eng. 2013, 64, 1062–1068. [Google Scholar] [CrossRef]
- Wang, C.; Guo, B.; Shan, D. Friction related size-effect in microforming—A review. Manuf. Rev. 2014, 1, 23. [Google Scholar] [CrossRef]
- Trzepieciński, T.; Szwajka, K.; Szewczyk, M. Analysis of surface topography changes during friction testing in cold metal forming of DC03 steel samples. Coatings 2023, 13, 1738. [Google Scholar] [CrossRef]
- Domhof, A.T.M.; Waanders, D.; Hol, J.; Sigvant, M. Friction and lubrication modelling in sheet metal forming: Influence of local tool roughness on product quality. IOP Conf. Ser. Mater. Sci. Eng. 2023, 1284, 012087. [Google Scholar] [CrossRef]
- Trzepieciński, T.; Kubit, A.; Dzierwa, A.; Krasowski, B.; Jurczak, W. Surface finish analysis in single point incremental sheet forming of rib-stiffened 2024-T3 and 7075-T6 alclad aluminium alloy panels. Materials 2021, 14, 1640. [Google Scholar] [CrossRef] [PubMed]
- Kundrak, J.; Gyani, K.; Bana, V. Roughness of ground and hard-turned surfaces on the basis of 3D parameters. Int. J. Adv. Manuf. Technol. 2008, 38, 110–119. [Google Scholar] [CrossRef]
Sample Denotation | Description |
---|---|
Ti-HIPP | Ti layer in the processes of the high-intensity plasma pulses (HIPPs), using rod plasma injector (RPI), named IBIS II |
TiN-MS | TiN layer in the processes of the magnetron sputtering (MS), using the home-made magnetron device |
Ti-MS+EPI | Ti layer in the processes of magnetron sputtering and then electron pulse irradiation (EPI), using the home-made magnetron device and electron gun, named RITM-2M. |
Countersample Type | Sq, μm | Ssk | Sku | Sp, μm | Sv, μm | Sz, μm | Sa, μm |
---|---|---|---|---|---|---|---|
146Cr6 (as-received) | 2.21 | 0.568 | 2.23 | 6.77 | 5.25 | 12.0 | 1.87 |
Ti-HIPP | 2.11 | 0.545 | 1.97 | 6.50 | 3.23 | 9.73 | 1.81 |
TiN-MS | 2.02 | 0.515 | 1.91 | 4.62 | 3.28 | 7.90 | 1.75 |
Ti-MS+EPI | 1.97 | 0.237 | 1.96 | 6.60 | 4.79 | 11.4 | 1.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trzepieciński, T.; Szwajka, K.; Szewczyk, M.; Zielińska-Szwajka, J.; Barlak, M.; Nowakowska-Langier, K.; Okrasa, S. Analysis of Influence of Coating Type on Friction Behaviour and Surface Topography of DC04/1.0338 Steel Sheet in Bending Under Tension Friction Test. Materials 2024, 17, 5650. https://doi.org/10.3390/ma17225650
Trzepieciński T, Szwajka K, Szewczyk M, Zielińska-Szwajka J, Barlak M, Nowakowska-Langier K, Okrasa S. Analysis of Influence of Coating Type on Friction Behaviour and Surface Topography of DC04/1.0338 Steel Sheet in Bending Under Tension Friction Test. Materials. 2024; 17(22):5650. https://doi.org/10.3390/ma17225650
Chicago/Turabian StyleTrzepieciński, Tomasz, Krzysztof Szwajka, Marek Szewczyk, Joanna Zielińska-Szwajka, Marek Barlak, Katarzyna Nowakowska-Langier, and Sebastian Okrasa. 2024. "Analysis of Influence of Coating Type on Friction Behaviour and Surface Topography of DC04/1.0338 Steel Sheet in Bending Under Tension Friction Test" Materials 17, no. 22: 5650. https://doi.org/10.3390/ma17225650
APA StyleTrzepieciński, T., Szwajka, K., Szewczyk, M., Zielińska-Szwajka, J., Barlak, M., Nowakowska-Langier, K., & Okrasa, S. (2024). Analysis of Influence of Coating Type on Friction Behaviour and Surface Topography of DC04/1.0338 Steel Sheet in Bending Under Tension Friction Test. Materials, 17(22), 5650. https://doi.org/10.3390/ma17225650