An HVOF-Sprayed (Cr3C2-NiCr+Co) Composite Coating on Ductile Cast Iron: Microstructure, Mechanical Properties, and Scratch Resistance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Coatings
2.2. Microstructure Characterization
2.3. Mechanical Properties and Scratch Resistance
3. Results and Discussion
3.1. Identification of the Coating Systems’ Microstructure and Phases: Cr3C2-NiCr/Ductile Cast Iron and Cr3C2-NiCr+Co/Ductile Cast Iron
3.2. Co Particles’ Effects on Coating Systems’ Mechanical and Tribological Characteristics: Cr3C2-NiCr/Ductile Cast Iron and Cr3C2-NiCr+Co/Ductile Cast Iron
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barbezat, G.; Nicoll, A.R.; Sickinger, A. Abrasion, Erosion and Scuffing Resistance of Carbide and Oxide Ceramic Thermal Sprayed Coatings for Different Applications. Wear 1993, 162–164, 529–537. [Google Scholar] [CrossRef]
- Mann, B.S.; Arya, V. Abrasive and erosive wear characteristics of plasma nitriding and HVOF coatings: Their application in hydro turbines. Wear 2001, 249, 354–360. [Google Scholar] [CrossRef]
- Yu, J.; Liu, X.; Yu, Y.; Li, H.; Liu, P.; Huang, K.; Sun, R. Research and Application of High-Velocity Oxygen Fuel. Coatings 2022, 12, 828. [Google Scholar] [CrossRef]
- Sahraoui, T.; Fenineche, N.E.; Montavon, G.; Coddet, C. Alternative to chromium: Characteristics and wear behavior of HVOF coatings for gas turbine shafts repair (heavy-duty). J. Mater. Process. Technol. 2004, 152, 43–55. [Google Scholar] [CrossRef]
- Magnani, M.; Suegama, P.H.; Espallargas, N.; Fugivara, C.S.; Dosta, S.; Guilemany, J.M.; Benedetti, A.V. Corrosion and wear studies of Cr3C2-NiCr–HVOF coatings sprayed on AA7050 T7 under cooling. J. Therm. Spray Technol. 2009, 18, 353–363. [Google Scholar] [CrossRef]
- Jonda, E.; Łatka, L.; Piekieła, W. Microstructure and selected properties of Cr3C2–NiCr coatings obtained by HVOF on magnesium alloy substrates. Materials 2020, 13, 2775. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, S.; Kreyer, H. Chromium carbide coatings produced with various HVOF spray systems. In Thermal Spray Practical Solutions for Engineering Problems, Proceedings of the 9th National Thermal Spray Conference, Cincinnati, OH, USA, 7–11 October 1996; Berndt, C.C., Ed.; ASM International: Materials Park, OH, USA, 1996; pp. 147–152. [Google Scholar]
- Chandra, S.; Fauchais, P. Formation of solid splats during thermal spray deposition. J. Therm. Spray Technol. 2009, 18, 148–180. [Google Scholar] [CrossRef]
- Wirojanupatump, S.; Shipway, P.H.; McCartney, D.G. The influence of HVOF powder feedstock characteristics on the abrasive wear behaviour of CrxCy-NiCr coatings. Wear 2001, 249, 829–837. [Google Scholar] [CrossRef]
- Matthews, L.; Berger, M.L. Long-term compositional development of Cr3C2-NiCr coatings at 500 °C, 700 °C and 900 °C. Int. J. Refract. Met. Hard Mater. 2016, 59, 1–18. [Google Scholar] [CrossRef]
- Kaur, M.; Singh, H.; Prkash, S. Surface engineering analysis of detonation-gun sprayed Cr3C2-NiCr coating under high-temperature oxidation and oxidation-erosion environments. Surf. Coat. Technol. 2011, 206, 530–541. [Google Scholar] [CrossRef]
- Dzhurinskiy, D.; Babu, A.; Pathak, P.; Elkin, A.; Dautov, S.; Shornikov, P. Microstructure and wear properties of atmospheric plasma-sprayed Cr3C2-NiCr composite coatings. Surf. Coat. Technol. 2021, 428, 127904. [Google Scholar] [CrossRef]
- Poirier, D.; Legoux, J.-G.; Lima, R. Engineering HVOF-sprayed Cr3C2-NiCr coatings: The effect of particle morphology and spraying parameters on the microstructure, properties, and high temperature wear performance. J. Therm. Spray Technol. 2013, 22, 280–289. [Google Scholar] [CrossRef]
- Qi, N.; Liao, S.; Li, J.; Wu, C.; Lv, M.; Liu, Y. Quantitative characterization of carbide loss and correlation with microstructure and performance of plasma-sprayed NiCr-Cr3C2 metal carbide coatings. J. Therm. Spray Technol. 2021, 30, 457–470. [Google Scholar]
- Picas, J.A.; Forn, A.; Igartua, A.; Mendoza, G. Mechanical and tribological properties of high velocity oxy-fuel thermal sprayed nanocrystalline CrC-NiCr coatings. Surf. Coat. Technol. 2003, 174, 1095–1100. [Google Scholar] [CrossRef]
- Ji, G.-C.; Li, C.-J.; Wang, Y.-Y.; Li, W.-Y. Microstructural characterization and abrasive wear performance of HVOF sprayed Cr3C2-NiCr coating. Surf. Coat. Technol. 2006, 200, 6749–6757. [Google Scholar] [CrossRef]
- He, J.; Schoenung, J.M. Nanostructured coatings. Mater. Sci. Eng. A 2002, 336, 274–319. [Google Scholar] [CrossRef]
- Zhou, W.; Zhou, K.; Li, Y.; Deng, C.; Zeng, K. High temperature wear performance of HVOF-sprayed Cr3C2-WC-NiCoCrMo and Cr3C2-NiCr hardmetal coatings. Appl. Surf. Sci. 2017, 416, 33–44. [Google Scholar] [CrossRef]
- Varis, T.; Suhonen, T.; Calonius, O.; Cuban, J.; Pietola, M. Optimalization of HVOF Cr3C2-NiCr coating for increased fatique performance. Surf. Coat. Technol. 2016, 305, 123–131. [Google Scholar] [CrossRef]
- Guilemany, J.M.; Espallargas, N.; Suegama, P.H. Comparative study of Cr3C2-NiCr coatings obtained by HVOF and hard chromium coatings. Corros. Sci. 2006, 48, 2998–3013. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, X.; Yang, F. Room-temperature and high temperature wear behaviors of as-sprayed and annealed Cr3C2-25NiCr coatings prepared by high velocity air-fuel spraying. Coatings 2020, 10, 1090. [Google Scholar] [CrossRef]
- Guilemany, J.M.; Miguel, J.M.; Vizcaino, S.; Lorenzana, C.; Delgado, J.; Sanchez, J. Role of heat treatments in the improvement of the sliding wear properties of Cr3C2-NiCr coating. Surf. Coat. Technol. 2002, 157, 207–213. [Google Scholar] [CrossRef]
- Robertson, A.L.; White, K.W. Microscale fracture mechanisms of a Cr3C2-NiCr HVOF coating. Mater. Sci. Eng. A 2017, 688, 62–69. [Google Scholar] [CrossRef]
- Shi, C.; Liu, S.; Irfan, S.; Gong, Q.; Wang, H.; Hu, M. Deposition mechanisms and characteristics of nano-modified multimodal Cr3C2–NiCr coatings sprayed by HVOF. Rev. Adv. Mater. Sci. 2022, 61, 526–538. [Google Scholar] [CrossRef]
- Janka, L.; Norpoth, J.; Trache, R.; Thiele, S.; Berger, L.M. HVOF- and HVAF-Sprayed Cr3C2-NiCr coatings deposited from feedstock powders of spherical morphology: Microstructure formation and high-stress abrasive wear resistance up to 800 °C. J. Therm. Spray Technol. 2017, 26, 1720–1731. [Google Scholar] [CrossRef]
- Ksiazek, M.; Boron, L.; Radecka, M.; Richert, M.; Tchorz, A. Mechanical and tribological properties of HVOF-Sprayed (Cr3C2-NiCr+Ni) composite coating on ductile cast iron. J. Mater. Eng. Perform. 2016, 25, 3185–3193. [Google Scholar] [CrossRef]
- Ksiazek, M.; Boron, L.; Radecka, M.; Richert, M.; Tchorz, A. The structure and bond strength of composite carbide coatings (WC-Co + Ni) deposited on ductile cast iron. J. Mater. Eng. Perform. 2016, 25, 502–509. [Google Scholar] [CrossRef]
- Ghadami, F.; Agham, A.S.R. Improvement of high velocity oxy-fuel spray coatings by thermal post-treatments: A critical review. Thin Sol. Film 2019, 678, 42–52. [Google Scholar] [CrossRef]
- Matthews, S.; Hyland, M.; James, B. Microhardness Variation in Relation to Carbide Development in Heat Treated Cr3C2-NiCr Thermal Spray Coatings. Acta Mater. 2003, 51, 4267–4277. [Google Scholar] [CrossRef]
- Serra, P.; Miguel, J.M.; Morenza, J.L.; Guilemany, J.M. Structural characterization of laser- treated Cr3C2-NiCr coatings. J. Mater. Res. 2001, 16, 3416–3422. [Google Scholar] [CrossRef]
- Zhang, Y.; Chong, K.; Liu, Q.; Bai, Y.; Zhang, Z.; Wu, D. High temperature tribological behavior of thermally-treated supersonic plasma sprayed Cr3C2-NiCr coatings. Int. J. Refract. Met. Hard Mater. 2021, 95, 105456. [Google Scholar] [CrossRef]
- Strecker, A.; Salzberger, U.; Mayer, J. Specimen preparation for transmission electron microscopy: Reliable method for cross-sections and brittle materials. Pract. Metallogr. 1993, 30, 482–495. [Google Scholar] [CrossRef]
- Anstis, G.R.; Chantikul, P.; Lawn, B.R.; Marshall, D.B. A critical evaluation of indentation techniques for measuring fracture toughness: I, Direct crack measurements. J. Am. Ceram. Soc. 1981, 64, 533–538. [Google Scholar] [CrossRef]
- Chicot, D.; Duarte, G.; Tricoteaux, A.; Jorgowski, B.; Leriche, A.; Lasage, J. Mechanical properties of indentation of thermal sprayed coatings: Relevance of the scale of measurement. Mater. Sci. Eng. A 2009, 527, 65–76. [Google Scholar] [CrossRef]
- Hirota, K.; Mitani, K.; Yoshinaka, M.; Yamaguchi, O. Simultaneous synthesis and consolidation of chromium carbides (Cr3C2, Cr7C3 and Cr23C6) by pulsed electric-current pressure sintering. Mater. Sci. Eng. A 2005, 399, 154–160. [Google Scholar] [CrossRef]
- Sun, L.; Ji, X.; Zhao, L.; Zhai, W.; Xu, L.; Dong, H.; Liu, Y.; Peng, J. First principles investigation of binary chromium carbides Cr7C3, Cr3C2 and Cr23C6: Electronic structures, mechanical properties and thermodynamic properties under pressure. Materials 2022, 15, 558. [Google Scholar] [CrossRef]
- Kawahara, Y. Application of high temperature corrosion-resistant materials and coatings under severe corrosive environment in waste-to-energy boilers. J. Therm. Spray Technol. 2007, 16, 202–213. [Google Scholar] [CrossRef]
- EN 1563:2018; Founding—Spheroidal Graphite Cast Iron. iTeh Standards: Newark, DE, USA, 2018.
- ISO 27307:2015; Thermal Spraying—Evaluation of Adhesion/Cohesion of Thermal Sprayed Ceramic Coatings by Transverse Scratch Testing. ISO International Standards: Geneva, Switzerland, 2015.
Gun Movement Speed, mm/s | Oxygen, L/min | Kerosene, L/h | Powder Feed Rate, g/min | Powder Feed Gas, L/min | Spraying Distance, mm |
---|---|---|---|---|---|
583 | 850 | 24 | 65 | Nitrogen, 9.5 | 370 |
Indenter Print Image | Measuring Line | HIT [GPa] | EIT [GPa] | Average HIT [GPa] | Average EIT [GPa] |
---|---|---|---|---|---|
I | 12.53 | 189.6 | 9.72 ± 2.21 | 179.35 ± 2.34 | |
9.47 | 178.88 | ||||
7.16 | 169.50 | ||||
II | 8.35 | 196.41 | 9.34 ± 1.36 | 202.60 ± 1.97 | |
8.43 | 195.53 | ||||
11.23 | 215.87 | ||||
III | 11.85 | 225.03 | 11.37 ± 0.73 | 216.95 ± 12.56 | |
10.32 | 194.43 | ||||
11.94 | 231.39 | ||||
IV | 10.46 | 207.91 | 12.46 ± 2.46 | 223.18 ± 10.47 | |
11.09 | 220.64 | ||||
15.83 | 240.99 | ||||
V | 10.05 | 205.21 | 8.04 ± 1.63 | 196.75 ± 5.37 | |
7.87 | 205.21 | ||||
6.19 | 179.82 |
Indenter Print Image | Measuring Line | HIT [GPa] | EIT [GPa] | Average HIT [GPa] | Average EIT [GPa] |
---|---|---|---|---|---|
I | 8.78 | 169.29 | 7.97 ± 0.76 | 168.26 ± 1.84 | |
7.85 | 164.36 | ||||
7.28 | 171.14 | ||||
II | 9.67 | 200.82 | 9.76 ± 1.63 | 204.68 ± 6.58 | |
11.44 | 220.40 | ||||
8.18 | 192.83 | ||||
III | 9.84 | 212.38 | 10.15 ± 1.13 | 209.71 ± 1.93 | |
11.40 | 211.19 | ||||
9.21 | 205.55 | ||||
IV | 9.92 | 211.50 | 10.09 ± 0.51 | 218.12 ± 4.33 | |
10.67 | 228.76 | ||||
9.69 | 214.10 | ||||
V | 8.45 | 169.50 | 7.63 ± 1.67 | 184.63 ± 11.67 | |
8.62 | 209.56 | ||||
5.82 | 174.83 |
Coating System | Load [N] | Lx [µm] | Ly [µm] | Acn × 10−3 [mm2] |
---|---|---|---|---|
Cr3C2-NiCr/ductile cast iron | 5 | 56.16 | 71.76 | 4.03 |
10 | 103.37 | 104.41 | 10.79 | |
15 | 200.00 | 212.50 | 42.50 | |
20 | 206.79 | 242.28 | 50.10 | |
25 | delamination | |||
Cr3C2-NiCr+Co/ductile cast iron | 5 | 51.34 | 76.33 | 3.92 |
10 | 83.43 | 104.17 | 8.69 | |
15 | 111.36 | 137.50 | 15.31 | |
20 | 141.67 | 191.65 | 27.15 | |
25 | 166.67 | 316.67 | 52.78 |
Coating System | Load [N] | No Crack [%] | Cohesive Crack [%] | Adhesive Crack [%] | Maximum Load at Which Cohesive Cracks Appears | Maximum Load at Which Adhesive Cracks Appears |
---|---|---|---|---|---|---|
Cr3C2-NiCr/ductile cast iron | 5 | 85 | 15 | 0 | over 5 N | |
10 | 70 | 30 | 0 | |||
15 | 50 | 50 | 0 | |||
20 | 70 | 30 | 0 | |||
25 | 0 | 0 | 100 | delamination | ||
Cr3C2-NiCr+Co/ductile cast iron | 5 | 95 | 5 | 0 | ||
10 | 90 | 10 | 0 | over 10 N | ||
15 | 80 | 20 | 0 | |||
20 | 70 | 30 | 0 | |||
25 | 60 | 40 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ksiazek, M.; Łyp-Wrońska, K. An HVOF-Sprayed (Cr3C2-NiCr+Co) Composite Coating on Ductile Cast Iron: Microstructure, Mechanical Properties, and Scratch Resistance. Materials 2024, 17, 1484. https://doi.org/10.3390/ma17071484
Ksiazek M, Łyp-Wrońska K. An HVOF-Sprayed (Cr3C2-NiCr+Co) Composite Coating on Ductile Cast Iron: Microstructure, Mechanical Properties, and Scratch Resistance. Materials. 2024; 17(7):1484. https://doi.org/10.3390/ma17071484
Chicago/Turabian StyleKsiazek, Marzanna, and Katarzyna Łyp-Wrońska. 2024. "An HVOF-Sprayed (Cr3C2-NiCr+Co) Composite Coating on Ductile Cast Iron: Microstructure, Mechanical Properties, and Scratch Resistance" Materials 17, no. 7: 1484. https://doi.org/10.3390/ma17071484
APA StyleKsiazek, M., & Łyp-Wrońska, K. (2024). An HVOF-Sprayed (Cr3C2-NiCr+Co) Composite Coating on Ductile Cast Iron: Microstructure, Mechanical Properties, and Scratch Resistance. Materials, 17(7), 1484. https://doi.org/10.3390/ma17071484