Solid-State Synthesis for High-Tetragonality, Small-Particle Barium Titanate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of BaTiO3 Particles
2.3. Characterization of BaTiO3 Particles
3. Results and Discussion
3.1. Analysis of Barium Titanate Synthesized by Direct Calcination
3.2. The Effect of Ball Milling Treatment on the Synthesized Barium Titanate
- BT0-0 is BaTiO3 sample synthesized without any ball milling treatment.
- BT0-1 is BaTiO3 sample synthesized solely for ball milling of raw BaTiO3.
- BT1-0 is BaTiO3 sample synthesized solely for ball milling of raw materials.
- BT1-1 is BaTiO3 sample synthesized by both two-step ball milling treatment.
3.3. The Influence of Raw Materials with Different Particle Sizes on the Synthesis of Barium Titanate
4. Conclusions
- (1)
- Ball milling treatment does not have a negative impact on the tetragonality. It resulted in a more homogeneous mixture of the raw materials, which helped to prevent the appearance of impurities after sintering.
- (2)
- Ball milling treatment has a significant positive effect on improving the morphology and particle size distribution of BaTiO3.
- (3)
- The replacement with nano-sized BaCO3 did not significantly affect the tetragonality or improve the particle size distribution and morphology of the synthesized BaTiO3.
- (4)
- The particle size of nano-TiO2 has a significant impact on the tetragonality of BaTiO3. Generally, using smaller-sized nano-TiO2 as a raw material can more effectively promote the formation of the tetragonal phase of BaTiO3.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Humera, N.; Arshad, F.; Raza, A.; Raza, M.A.; Atiq, S.; Kayani, Z.N.; Naseem, S.; Riaz, S. Dielectric and ferroelectric properties of X8R perovskite barium titanate for application in multilayered ceramics capacitors. J. Mater. Sci. Mater. Electron. 2022, 33, 7405–7422. [Google Scholar] [CrossRef]
- Sebastian, T.; Michalek, A.; Hedayati, M.; Lusiola, T.; Clemens, F. Enhancing dielectric properties of barium titanate macrofibers. J. Eur. Ceram. Soc. 2019, 39, 3716–3721. [Google Scholar] [CrossRef]
- Li, R.; Wei, W.; Hai, J.; Gao, L.; Gao, Z.; Fan, Y. Preparation and electric-field response of novel tetragonal barium titanate. J. Alloys Compd. 2013, 574, 212–216. [Google Scholar] [CrossRef]
- Hoshina, T. Size effect of barium titanate: Fine particles and ceramics. J. Ceram. Soc. Jpn. 2013, 121, 156–161. [Google Scholar] [CrossRef]
- Jiang, B.; Iocozzia, J.; Zhao, L.; Zhang, H.; Harn, Y.W.; Chen, Y.; Lin, Z. Barium titanate at the nanoscale: Controlled synthesis and dielectric and ferroelectric properties. Chem. Soc. Rev. 2019, 48, 1194–1228. [Google Scholar] [CrossRef]
- Lv, L.; Wang, Y.; Gan, L.; Liu, Q.; Zhou, J.-P. Sintering process effect on the BaTiO3 ceramic properties with the hydrothermally prepared powders. J. Mater. Sci. Mater. Electron. 2018, 29, 14883–14889. [Google Scholar] [CrossRef]
- Li, Z.; Yan, S.; Xia, J.; Cao, F.; Chen, X.; Song, Y.; Chen, Y.; Lin, Z.-S.; Wang, G. Direct current (dc) bias effect on the dielectric constant of Dy and Ho-doped BaTiO3-based ceramic and MLCCs. Ceram. Int. 2022, 48, 27439–27447. [Google Scholar] [CrossRef]
- Zhu, C.; Cai, Z.; Feng, P.; Zhang, W.; Hui, K.; Cao, X.; Fu, Z.; Wang, X. Reliability Mechanisms of the Ultrathin-Layered BaTiO3-Based BME MLCC. Acta Phys. Chim. Sin. 2023, 40, 2304015. [Google Scholar] [CrossRef]
- Uchino, K.; Sadanaga, E.; Hirose, T. Dependence of the Crystal Structure on Particle Size in Barium Titanate. J. Am. Ceram. Soc. 2005, 72, 1555–1558. [Google Scholar] [CrossRef]
- Kutty, T.R.N.; Vivekanandan, R.; Murugaraj, P. Precipitation of rutile and anatase (TiO2) fine powders and their conversion to MTiO3 (M= Ba, Sr, Ca) by the hydrothermal method. Mater. Chem. Phys. 1988, 19, 533–546. [Google Scholar] [CrossRef]
- Kita, T.; Kondo, S.; Takei, T.; Kumada, N.; Nakashima, K.; Fujii, I.; Wada, S.; Suzuki, T.S.; Uchikoshi, T.; Sakka, Y.; et al. Preparation and characterization of Grain-Oriented Barium Titanate Ceramics Using Electrophoresis Deposition Method under A High Magnetic Field. IOP Conf. Ser. Mater. Sci. Eng. 2011, 18, 092041. [Google Scholar] [CrossRef]
- Wada, S.; Narahara, M.; Hoshina, T.; Kakemoto, H.; Tsurumi, T. Preparation of nm-sized BaTiO3 particles using a new 2-step thermal decomposition of barium titanyl oxalate. J. Mater. Sci. 2003, 38, 2655–2660. [Google Scholar] [CrossRef]
- On, D.V.; Vuong, L.D.; Chuong, T.V.; Quang, D.A.; Tung, V.T. Study on the synthesis and application of BaTiO3 nanospheres. Int. J. Mater. Res. 2021, 112, 448–456. [Google Scholar] [CrossRef]
- Gromada, M.; Biglar, M.; Trzepieciński, T.; Stachowicz, F. Characterization of BaTiO3 piezoelectric perovskite material for multilayer actuators. Bull. Mater. Sci. 2017, 40, 759–771. [Google Scholar] [CrossRef]
- Hao, Y.A.; Wang, X.H.; Zhang, H.; Shen, Z.B.; Li, L.T. Investigation on the synthesis procedure of ultrafine monodispersed BaTiO3 powders by solvothermal method. J. Ceram. Soc. Jpn. 2013, 121, 506–511. [Google Scholar] [CrossRef]
- Wan, L.; Zhu, G.; Xu, H.; Zhao, Y.; Cheng, Y.; Fu, Z.; Hu, C.; Yu, A. Low-temperature solid-state synthesis of tetragonal BaTiO3 powders from Ba(OH)2 and H2TiO3. Appl. Phys. A 2022, 128, 858. [Google Scholar] [CrossRef]
- Walton, R.I.; Millange, F.; Smith, R.I.; Hansen, T.C.; O’Hare, D. Real time observation of the hydrothermal crystallization of barium titanate using in situ neutron powder diffraction. J. Am. Chem. Soc. 2001, 123, 12547–12555. [Google Scholar] [CrossRef]
- Kainth, S.; Choudhary, R.; Upadhyay, S.; Bajaj, P.; Sharma, P.; Brar, L.K.; Pandey, O.P. Non-isothermal solid-state synthesis kinetics of the tetragonal barium titanate. J. Solid State Chem. 2022, 312, 123275. [Google Scholar] [CrossRef]
- Mao, Y.; Gerrow, A.; Ray, E.; Perez, N.D.; Edler, K.; Wolf, B.; Binner, E. Lignin recovery from cocoa bean shell using microwave-assisted extraction and deep eutectic solvents. Bioresour. Technol. 2023, 372, 128680. [Google Scholar] [CrossRef]
- Choi, I.; Lee, S.-J.; Kim, J.C.; Kim, Y.-g.; Hyeon, D.Y.; Hong, K.-S.; Suh, J.; Shin, D.; Jeong, H.Y.; Park, K.-I. Piezoelectricity of picosecond laser-synthesized perovskite BaTiO3 nanoparticles. Appl. Surf. Sci. 2020, 511, 145614. [Google Scholar] [CrossRef]
- Küçük, Ö.; Teber, S.; Cihan Kaya, İ.; Akyıldız, H.; Kalem, V. Photocatalytic activity and dielectric properties of hydrothermally derived tetragonal BaTiO3 nanoparticles using TiO2 nanofibers. J. Alloys Compd. 2018, 765, 82–91. [Google Scholar] [CrossRef]
- Jin, M.H.; Shin, E.; Jin, S.; Jo, H.; Ok, K.M.; Hong, J.; Jun, B.-H.; Durrant, J.R. Solvothermal Synthesis of Ferroelectric BaTiO3 Nanoparticles and Their Application to Dye-sensitized Solar Cells. J. Korean Phys. Soc. 2018, 73, 627–631. [Google Scholar] [CrossRef]
- Maison, W.; Kleeberg, R.; Heimann, R.B.; Phanichphant, S. Phase content, tetragonality, and crystallite size of nanoscaled barium titanate synthesized by the catecholate process: Effect of calcination temperature. J. Eur. Ceram. Soc. 2003, 23, 127–132. [Google Scholar] [CrossRef]
- Kwon, S.-W.; Yoon, D.-H. Tetragonality of nano-sized barium titanate powder prepared with growth inhibitors upon heat treatment. J. Eur. Ceram. Soc. 2007, 27, 247–252. [Google Scholar] [CrossRef]
- Tihtih, M.; Ponaryadov, A.V.; Ibrahim, J.E.F.M.; Kurovics, E.; Kotova, E.L.; Gömze, L.A. Elect of temperature on the structural properties of barium titanate nanopowders synthesis via sol-gel process. Epa. -J. Silic. Based Compos. Mater. 2020, 72, 165–168. [Google Scholar] [CrossRef]
- Clabel H, J.L.; Awan, I.T.; Pinto, A.H.; Nogueira, I.C.; Bezzon, V.D.N.; Leite, E.R.; Balogh, D.T.; Mastelaro, V.R.; Ferreira, S.O.; Marega, E. Insights on the mechanism of solid state reaction between TiO2 and BaCO3 to produce BaTiO3 powders: The role of calcination, milling, and mixing solvent. Ceram. Int. 2020, 46, 2987–3001. [Google Scholar] [CrossRef]
- Pang, X.; Wang, T.; Liu, B.; Fan, X.; Liu, X.; Shen, J.; Zhong, C.; Hu, W. Effect of solvents on the morphology and structure of barium titanate synthesized by a one-step hydrothermal method. Int. J. Miner. Metall. Mater. 2023, 30, 1407–1416. [Google Scholar] [CrossRef]
- Wang, T.; Pang, X.; Liu, B.; Liu, J.; Shen, J.; Zhong, C. A Facile and Eco-Friendly Hydrothermal Synthesis of High Tetragonal Barium Titanate with Uniform and Controllable Particle Size. Materials 2023, 16, 4191. [Google Scholar] [CrossRef]
Sample | c/a | D10 (μm) | D50 (μm) | D90 (μm) |
---|---|---|---|---|
BT0-0 | 1.01138 | 0.965 | 6.125 | 20.179 |
BT0-1 | 1.00586 | 0.648 | 3.551 | 15.214 |
BT1-0 | 1.01049 | 0.134 | 0.182 | 2.620 |
BT1-1 | 1.01017 | 0.131 | 0.171 | 0.226 |
Sample | c/a | D10 (μm) | D50 (μm) | D90 (μm) |
---|---|---|---|---|
BT5-10 | 1.01022 | 0.129 | 0.170 | 0.224 |
BT25 | 1.00941 | 0.132 | 0.177 | 0.253 |
BT40 | 1.00924 | 0.134 | 0.174 | 0.232 |
Researchers | Heat Treatment (°C) | Particle Size (nm) | Tetragonality (c/a) | Method |
---|---|---|---|---|
Maison et al. [23] | 1100 | 392 | 1.0098 | Catecholate process |
Kown et al. [24] | 1000 | 243 | 1.0074 | Hydrothermal |
1000 | 326 | 1.0105 | ||
Tihtih et al. [25] | 800 | 26.15 | 1.0021 | Sol–gel process |
900 | 29.65 | 1.0054 | ||
1000 | 32.46 | 1.0063 | ||
Clabel et al. [26] | 1000 | 240 | 1.0060 | Solid-state reaction |
1100 | 360 | 1.0081 | ||
Xiaoxiao Pang et al. [27] | - | 82 | 1.0088 | Hydrothermal |
Tingting Wang et al. [28] | - | near 160 | near 1.00895 | Hydrothermal |
This work | 1050 | 170 | 1.01022 | Solid-state reaction |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, T.; Shen, J.; Peng, Q.; Liu, J.; Hu, W.; Zhong, C. Solid-State Synthesis for High-Tetragonality, Small-Particle Barium Titanate. Materials 2024, 17, 5655. https://doi.org/10.3390/ma17225655
Hao T, Shen J, Peng Q, Liu J, Hu W, Zhong C. Solid-State Synthesis for High-Tetragonality, Small-Particle Barium Titanate. Materials. 2024; 17(22):5655. https://doi.org/10.3390/ma17225655
Chicago/Turabian StyleHao, Tianyu, Jing Shen, Qiaochu Peng, Jie Liu, Wenbin Hu, and Cheng Zhong. 2024. "Solid-State Synthesis for High-Tetragonality, Small-Particle Barium Titanate" Materials 17, no. 22: 5655. https://doi.org/10.3390/ma17225655
APA StyleHao, T., Shen, J., Peng, Q., Liu, J., Hu, W., & Zhong, C. (2024). Solid-State Synthesis for High-Tetragonality, Small-Particle Barium Titanate. Materials, 17(22), 5655. https://doi.org/10.3390/ma17225655