Effect of Dehydrogenation and Heat Treatments on the Microstructure and Tribological Behavior of Electroless Ni-P Nanocomposite Coatings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Coating Preparation
2.2. Thermal Treatments
2.3. Coating Characterization
2.4. Microhardness and Instrumented Indentation Tests
2.5. Wear Tests
3. Results and Discussion
3.1. Microhardness and Microstructural Characterization of Coatings
3.2. Instrumented Indentation Tests
3.3. Wear Tests
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lelevic, A.; Walsh, F.C. Electrodeposition of Ni-P Alloy Coatings: A Review. Surf. Coat. Technol. 2019, 369, 198–220. [Google Scholar] [CrossRef]
- Agarwala, R.C.; Agarwala, V. Electroless Alloy/Composite Coatings: A Review. Sadhana 2003, 28, 475–493. [Google Scholar] [CrossRef]
- Loto, C.A. Electroless Nickel Plating—A Review. Silicon 2016, 8, 177–186. [Google Scholar] [CrossRef]
- Krishnan, K.H.; John, S.; Srinivasan, K.N.; Praveen, J.; Ganesan, M.; Kavimani, P.M. An Overall Aspect of Electroless Ni-P Depositions—A Review Article. Metall. Mater. Trans. A 2006, 37A, 1917–1926. [Google Scholar] [CrossRef]
- Balaraju, J.N.; Sankara Narayanan, T.S.N.; Seshadri, S.K. Structure and Phase Transformation Behaviour of Electroless Ni-P Composite Coatings. Mater. Res. Bull. 2006, 41, 847–860. [Google Scholar] [CrossRef]
- Gould, A.J.; Boden, P.J.; Harris, S.J. Phosphorus Distribution in Electroless Nickel Deposits. Surf. Technol. 1981, 12, 93–102. [Google Scholar] [CrossRef]
- Wang, X.C.; Cai, W.B.; Wang, W.J.; Liu, H.T.; Yu, Z.Z. Effects of Ligands on Electroless Ni-P Alloy Plating from Alkaline Citrate-Ammonia Solution. Surf. Coat. Technol. 2003, 168, 300–306. [Google Scholar] [CrossRef]
- Apachitei, I.; Duszczyk, J. Autocatalytic Nickel Coatings on Aluminium with Improved Abrasive Wear Resistance. Surf. Coat. Technol. 2000, 132, 8998. [Google Scholar] [CrossRef]
- Keong, K.G.; Sha, W.; Malinov, S. Crystallisation Kinetics and Phase Transformation Behaviour of Electroless Nickel-Phosphorus Deposits with High Phosphorus Content. J. Alloys Compd. 2002, 334, 192–199. [Google Scholar] [CrossRef]
- Luo, H.; Leitch, M.; Behnamian, Y.; Ma, Y.; Zeng, H.; Luo, J.L. Development of Electroless Ni-P/Nano-WC Composite Coatings and Investigation on Its Properties. Surf. Coat. Technol. 2015, 277, 99–106. [Google Scholar] [CrossRef]
- Elsener, B.; Crobu, M.; Scorciapino, M.A.; Rossi, A. Electroless Deposited Ni-P Alloys: Corrosion Resistance Mechanism. J. Appl. Electrochem. 2008, 38, 1053–1060. [Google Scholar] [CrossRef]
- Fayyad, E.M.; Abdullah, A.M.; Hassan, M.K.; Mohamed, A.M.; Jarjoura, G.; Farhat, Z. Recent Advances in Electroless-Plated Ni-P and Its Composites for Erosion and Corrosion Applications: A Review. Emergent Mater. 2018, 1, 3–24. [Google Scholar] [CrossRef]
- Crobu, M.; Scorciapino, A.; Elsener, B.; Rossi, A. The Corrosion Resistance of Electroless Deposited Nano-Crystalline Ni-P Alloys. Electrochim. Acta 2008, 53, 3364–3370. [Google Scholar] [CrossRef]
- León-Patiño, C.A.; García-Guerra, J.; Aguilar-Reyes, E.A. Tribological Characterization of Heat-Treated Ni-P and Ni-P-Al2O3 Composite Coatings by Reciprocating Sliding Tests. Wear 2019, 426–427, 330–340. [Google Scholar] [CrossRef]
- Ahmadkhaniha, D.; Zanella, C. The Effects of Additives, Particles Load and Current Density on Codeposition of SiC Particles in NiP Nanocomposite Coatings. Coatings 2019, 9, 554. [Google Scholar] [CrossRef]
- Balaraju, J.N.; Sankara Narayanan, T.S.N.; Seshadri, S.K. Electroless Ni-P Composite Coatings. J. Appl. Electrochem. 2003, 33, 807–816. [Google Scholar] [CrossRef]
- Narayanan, T.S.N.S.; Seshadri, S.K.; Park, I.S.; Lee, M.H. Electroless Nanocomposite Coatings: Synthesis, Characteristics, and Applications. In Handbook of Nanoelectrochemistry; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 389–416. [Google Scholar]
- Farhan, M.; Fayyaz, O.; Nawaz, M.; Radwan, A.B.; Shakoor, R.A. Synthesis and Properties of Electroless Ni–P-HfC Nanocomposite Coatings. Mater. Chem. Phys. 2022, 291, 126696. [Google Scholar] [CrossRef]
- Pinate, S.; Ghassemali, E.; Zanella, C. Strengthening Mechanisms and Wear Behavior of Electrodeposited Ni–SiC Nanocomposite Coatings. J. Mater. Sci. 2022, 57, 16632–16648. [Google Scholar] [CrossRef]
- Ram, M.; Ansari, A.; Sharma, S.; Sharma, A.K. Annealing Effect on Tribological Resistance of Electroless Ni-P/SiC Nanocomposite Coatings. In Proceedings of the AIP Conference Proceedings, Madurai, India, 12 August 2020; American Institute of Physics Inc.: College Park, MD, USA, 2020; Volume 2297. [Google Scholar]
- Farhan, M.; Fayyaz, O.; Qamar, M.G.; Shakoor, R.A.; Bhadra, J.; Al-Thani, N.J. Mechanical and Corrosion Characteristics of TiC Reinforced Ni-P Based Nanocomposite Coatings. Mater. Today Commun. 2023, 36, 106901. [Google Scholar] [CrossRef]
- Pedrizzetti, G.; Genova, V.; Bellacci, M.; Scrinzi, E.; Brotzu, A.; Marra, F.; Pulci, G. Influence of Deposition Temperature and WC Concentration on the Microstructure of Electroless Ni-P-WC Nanocomposite Coatings with Improved Hardness and Corrosion Resistance. Coatings 2024, 14, 826. [Google Scholar] [CrossRef]
- Karthikeyan, S.; Vijayaraghavan, L. Influence of Nano Al2O3 Particles on the Adhesion, Hardness and Wear Resistance of Electroless NiP Coatings. Int. J. Mater. Mech. Manuf. 2015, 4, 106–110. [Google Scholar] [CrossRef]
- Arumugam, A.; Lakshmanan, P.; Palani, S.; Parthiban, K. Wear Behavior of Ni-P and Al2O3 electroless Nano Coating on Aluminium Alloy. In Proceedings of the Materials Today: Proceedings; Elsevier Ltd.: Amsterdam, The Netherlands, 2021; Volume 46, pp. 1066–1070. [Google Scholar]
- Prabu Ram, G.; Karthikeyan, S.; Nicholas, P.E.; Sofia, A.S. Dry Sliding Wear Behavior of Electroless NIP and NIP-Al2O3 Composite Coatings. In Proceedings of the Materials Today: Proceedings; Elsevier Ltd.: Amsterdam, The Netherlands, 2020; Volume 37, pp. 2001–2009. [Google Scholar]
- Sliem, M.H.; Shahzad, K.; Sivaprasad, V.N.; Shakoor, R.A.; Abdullah, A.M.; Fayyaz, O.; Kahraman, R.; Umer, M.A. Enhanced Mechanical and Corrosion Protection Properties of Pulse Electrodeposited NiP-ZrO2 Nanocomposite Coatings. Surf. Coat. Technol. 2020, 403, 126340. [Google Scholar] [CrossRef]
- Sliem, M.H.; Fayyaz, O.; Shakoor, R.A.; Bagheridard, S.; Mansoor, B.; Abdullah, A.; Mohamed, A.M.A. The Influence of Different Preparation Methods on the Erosion Behavior of NiP-ZrO2 Nanocomposite Coating. Tribol. Int. 2023, 178, 108014. [Google Scholar] [CrossRef]
- Szczygieł, B.; Turkiewicz, A.; Serafińczuk, J. Surface Morphology and Structure of Ni-P, Ni-P-ZrO2, Ni-W-P, Ni-W-P-ZrO2 Coatings Deposited by Electroless Method. Surf. Coat. Technol. 2008, 202, 1904–1910. [Google Scholar] [CrossRef]
- Chinchu, K.S.; Riyas, A.H.; Ameen Sha, M.; Geethanjali, C.V.; Saji, V.S.; Shibli, S.M.A. ZrO2–CeO2 Assimilated Electroless Ni–P Anti-Corrosion Coatings. Surf. Interfaces 2020, 21, 100704. [Google Scholar] [CrossRef]
- Tabatabaei, F.; Vardak, S.; Alirezaei, S.; Raeissi, K. The Tribocorrosion Behavior of Ni-P and Ni-P-ZrO2 Coatings. Kov. Mater. 2018, 56, 379–387. [Google Scholar] [CrossRef]
- Pedrizzetti, G.; Paglia, L.; Genova, V.; Cinotti, S.; Bellacci, M.; Marra, F.; Pulci, G. Microstructural, Mechanical and Corrosion Characterization of Electroless Ni-P Composite Coatings Modified with ZrO2 Reinforcing Nanoparticles. Surf. Coat. Technol. 2023, 473, 129981. [Google Scholar] [CrossRef]
- Aslanyan, I.R.; Bonino, J.-P.; Celis, J.-P. Effect of Reinforcing Submicron SiC Particles on the Wear of Electrolytic NiP Coatings: Part 2: Bi-Directional Sliding. Surf. Coat. Technol. 2006, 201, 581–589. [Google Scholar] [CrossRef]
- Aslanyan, I.R.; Bonino, J.-P.; Celis, J.-P. Effect of Reinforcing Submicron SiC Particles on the Wear of Electrolytic NiP Coatings: Part 1. Uni-Directional Sliding. Surf. Coat. Technol. 2006, 200, 2909–2916. [Google Scholar] [CrossRef]
- He, Y.; Zhang, S.; He, Y.; Song, R.; Zhang, Z.; Liu, B.; Li, H.; Shangguan, J. Effects of Yttrium-Stabilized Zirconia (Different Yttrium Content) Doping on the Structure, Corrosion Resistance and Wear Resistance of Ni-P Electroless Coating. Colloids Surf. A Physicochem. Eng. Asp. 2022, 654, 130059. [Google Scholar] [CrossRef]
- Mallory, G.O.; Hajdu, J.B. Electroless Plating: Fundamentals and Applications; American Electroplaters and Surface Finishers Society: New York, NY, USA, 1990. [Google Scholar]
- Tulsi, S.S. Properties of Electroless Nickel. Trans. Inst. Metal. Finish. 1986, 64, 73–76. [Google Scholar] [CrossRef]
- Gangloff, R.P.; Somerday, B.P. (Eds.) Gaseous Hydrogen Embrittlement of Materials in Energy Technologies Volume 1: The Problem, Its Charaterization and Efects on Particular Alloy Classes; Woodhead Publishing: Cambridge, UK, 2012; ISBN 9780081016411. [Google Scholar]
- Wang, L.L.; Chen, H.J.; Chen, Z.L. Study on Post-Treatments for Electroless Ni-P Coating. Surf. Eng. 2011, 27, 57–60. [Google Scholar] [CrossRef]
- Liao, Y.; Zhang, S.T.; Dryfe, R. A Study of Corrosion Performance of Electroless Ni–P and Ni–W–P Coatings on AZ91D Magnesium Alloy. Materwiss. Werksttech. 2011, 42, 833–837. [Google Scholar] [CrossRef]
- Inam-Ul-Haque; Ahmad, S.; Khan, A. Electroless Nickel Plating on ABS Plastics from Nickel and Nickel Sulfate Baths. J. Chem. Soc. Pak. 2005, 27, 246–249. [Google Scholar]
- Staia, M.H.; Castillo, E.J.; Puchi, E.S.; Lewis, B.; Hintermann, H.E. Wear Performance and Mechanism of Electroless Ni-P Coating. Surf. Coat. Technol. 1996, 86, 598–602. [Google Scholar] [CrossRef]
- ASTM 182; Standard Specification for Forged or Rolled Alloy and Stainless Steel Pipe Flanges, Forged Fittings, and Valves and Parts for High-Temperature Service. ASTM: West Conshohocken, PA, USA, 2012.
- Genova, V.; Paglia, L.; Pulci, G.; Pedrizzetti, G.; Pranzetti, A.; Romanelli, M.; Marra, F. Medium and High Phosphorous Ni-P Coatings Obtained via an Electroless Approach: Optimization of Solution Formulation and Characterization of Coatings. Coatings 2023, 13, 1490. [Google Scholar] [CrossRef]
- Park, I.C.; Kim, S.J. Effect of Lead Nitrate Concentration on Electroless Nickel Plating Characteristics of Gray Cast Iron. Surf. Coat. Technol. 2019, 376, 2–7. [Google Scholar] [CrossRef]
- Wu, W.; Liu, J.; Miao, N.; Jiang, J.; Zhang, Y.; Zhang, L.; Yuan, N.; Wang, Q.; Tang, L. Influence of Thiourea on Electroless Ni–P Films Deposited on Silicon Substrates. J. Mater. Sci. Mater. Electron. 2019, 30, 7717–7724. [Google Scholar] [CrossRef]
- ASTM E384-11; Standard Test Method for Knoop and Vickers Hardness of Materials. ASTM: West Conshohocken, PA, USA, 2012.
- ISO 14577-4:2016; Metallic Materials—Instrumented Test for Hardness and materials Parameters—Part 4: Test Method for Metallic and Nonmetallic Coatings. ISO: Geneva, Switzerland, 2016.
- Oliver, W.C.; Pharr, G.M. Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology. J. Mater. Res. 2004, 19, 3–20. [Google Scholar] [CrossRef]
- Genova, V.; Paglia, L.; Marra, F.; Bartuli, C.; Pulci, G. Pure Thick Nickel Coating Obtained by Electroless Plating: Surface Characterization and Wetting Properties. Surf. Coat. Technol. 2019, 357, 595–603. [Google Scholar] [CrossRef]
- Jiang, J.; Chen, H.; Zhu, L.; Qian, W.; Han, S.; Lin, H.; Wu, H. Effect of Heat Treatment on Structures and Mechanical Properties of Electroless Ni–P–GO Composite Coatings. RSC Adv. 2016, 6, 109001–109008. [Google Scholar] [CrossRef]
- Zhao, D.; Zhou, L.; Du, Y.; Wang, A.; Peng, Y.; Kong, Y.; Sha, C.; Ouyang, Y.; Zhang, W. Structure, Elastic and Thermodynamic Properties of the Ni–P System from First-Principles Calculations. Calphad 2011, 35, 284–291. [Google Scholar] [CrossRef]
- Hamada, A.S.; Sahu, P.; Porter, D.A. Indentation Property and Corrosion Resistance of Electroless Nickel-Phosphorus Coatings Deposited on Austenitic High-Mn TWIP Steel. Appl. Surf. Sci. 2015, 356, 1–8. [Google Scholar] [CrossRef]
- ISO 21920-2; Geometrical Product Specifications (GPS)-Surface Texture: Profile-Part 2: Terms, Definitions and Surface Texture. ISO: Geneva, Switzerland, 2021.
- Okonkwo, P.C.; Kelly, G.; Rolfe, B.F.; Pereira, M.P. The Effect of Temperature on Sliding Wear of Steel-Tool Steel Pairs. Wear 2012, 282–283, 22–30. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, D.L. Contribution of Orowan Strengthening Effect in Particulate-Reinforced Metal Matrix Nanocomposites. Mater. Sci. Eng. A 2008, 483–484, 148–152. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, D.L. Consideration of Orowan Strengthening Effect in Particulate-Reinforced Metal Matrix Nanocomposites: A Model for Predicting Their Yield Strength. Scr. Mater. 2006, 54, 1321–1326. [Google Scholar] [CrossRef]
- Bakhit, B.; Akbari, A. Effect of Particle Size and Co-Deposition Technique on Hardness and Corrosion Properties of Ni-Co/SiC Composite Coatings. Surf. Coat. Technol. 2012, 206, 4964–4975. [Google Scholar] [CrossRef]
- Islam, M.; Azhar, M.R.; Fredj, N.; Burleigh, T.D.; Oloyede, O.R.; Almajid, A.A.; Ismat Shah, S. Influence of SiO2 Nanoparticles on Hardness and Corrosion Resistance of Electroless Ni–P Coatings. Surf. Coat. Technol. 2015, 261, 141–148. [Google Scholar] [CrossRef]
- Shibli, S.M.A.; Chinchu, K.S.; Sha, M.A. Development of Nano-Tetragonal Zirconia-Incorporated Ni–P Coatings for High Corrosion Resistance. Acta Metall. Sin. 2019, 32, 481–494. [Google Scholar] [CrossRef]
- Sudagar, J.; Lian, J.; Sha, W. Electroless Nickel, Alloy, Composite and Nano Coatings—A Critical Review. J. Alloys Compd. 2013, 571, 183–204. [Google Scholar] [CrossRef]
- Samanta, S.; Vishwanath, K.; Mondal, K.; Dutta, M.; Singh, S.B. Electroless Amorphous NiP Coatings Over API X70 Steel: Resistance to Wear and Hydrogen Embrittlement. Met. Mater. Int. 2022, 28, 397–411. [Google Scholar] [CrossRef]
- Novak, S.; Kalin, M. The Effect of PH on the Wear of Water-Lubricated Alumina and Zirconia Ceramics. Tribol. Lett. 2004, 17, 727–732. [Google Scholar] [CrossRef]
- Apachitei, I.; Tichelaar, F.D.; Duszczyk, J.; Katgerman, L. The Effect of Heat Treatment on the Structure and Abrasive Wear Resistance of Autocatalytic NiP and NiP-SiC Coatings. Surf. Coat. Technol. 2002, 149, 263–278. [Google Scholar] [CrossRef]
- Dhakal, D.R.; Kshetri, Y.K.; Gyawali, G.; Kim, T.H.; Choi, J.H.; Lee, S.W. Understanding the Effect of Si3N4 Nanoparticles on Wear Resistance Behavior of Electroless Nickel-Phosphorus Coating through Structural Investigation. Appl. Surf. Sci. 2021, 541, 148403. [Google Scholar] [CrossRef]
- Khodaei, M.; Gholizadeh, A.M. SiC Nanoparticles Incorporation in Electroless NiP-Graphene Oxide Nanocomposite Coatings. Ceram. Int. 2021, 47, 25287–25295. [Google Scholar] [CrossRef]
- Ahmadkhaniha, D.; Eriksson, F.; Zanella, C. Optimizing Heat Treatment for Electroplated Nip and NiP/SiC Coatings. Coatings 2020, 10, 1179. [Google Scholar] [CrossRef]
- Uppada, S.; Koona, R.; Chintada, V.B.; Koutavarapu, R. Influence of Heat Treatment on Crystal Structure, Microhardness and Corrosion Resistance of Bilayer Electroless Ni-P-SiC/Ni-P-Al2O3 Coatings. Silicon 2023, 15, 793–803. [Google Scholar] [CrossRef]
- Pedrizzetti, G.; Paglia, L.; Genova, V.; Conti, M.; Baiamonte, L.; Marra, F. The Effect of Composition and Heat Treatment on Microhardness of Ni-P and Ni-P-NanoZrO2 Coatings. Chem. Eng. Trans. 2023, 100, 433–438. [Google Scholar] [CrossRef]
- Leyland, A.; Matthews, A. On the Significance of the H/E Ratio in Wear Control: A Nanocomposite Coating Approach to Optimised Tribological Behaviour. Wear 2000, 246, 1–11. [Google Scholar] [CrossRef]
- Hieu, N.N.; Chung, P.N. Analysis of Stability and Stick-Slip Motion of a Friction-Induced Vibrating System with Dwell-Time Effect. Int. J. Mech. Sci. 2021, 205, 106605. [Google Scholar] [CrossRef]
- Gay, P.A.; Limat, J.M.; Steinmann, P.A.; Pagetti, J. Characterization and Mechanical Properties of Electroless NiP–ZrO2 Coatings. Surf. Coat. Technol. 2007, 202, 1167–1171. [Google Scholar] [CrossRef]
- Biswas, A.; Kalyan Das, S.; Sahoo, P. Correlating tribological performance with phase transformation behavior for electroless Ni-(high)P coating. Surf. Coat. Technol. 2017, 328, 102–114. [Google Scholar] [CrossRef]
- Gadhari, P.; Sahoo, P. Effect of Annealing Temperature and Alumina Particles on Mechanical and Tribological Properties of Ni-P-Al2O3 Composite Coatings. Silicon 2017, 9, 761–774. [Google Scholar] [CrossRef]
Compound | Concentration (g/L) |
---|---|
NaH2PO2 ∙ H2O | 110 |
C2H3NaO2 | 20 |
C6H8O7 | 9 |
NiSO4 ∙ 6H2O | 25 |
Thiourea | 8.5 ppm a |
pH | 4.2 |
Temperature | 90 °C |
Specimen | Thermal Treatments |
---|---|
Standard Ni-P | None |
Standard Ni-P | Dehydrogenated |
Ni-P nanocomposite | None |
Ni-P nanocomposite | Dehydrogenated |
Ni-P nanocomposite | 400 °C 1 h |
Ni-P nanocomposite | Dehydrogenated + 400 °C 1 h |
Sample | Phase | Space Group | Lattice Constant (Å) | Ni Grain Size (nm) | Crystallinity Index (%) |
---|---|---|---|---|---|
Ni-P | Ni | Fm-3m | 3.5238 | 1.96 | 40 |
Ni-P/Al2O3 | Ni | Fm-3m | 3.5238 | 1.83 | 49 |
Al2O3 | R-3c | a, b = 4.7587 c = 12.9929 | n.a. | ||
Ni-P/ZrO2 | Ni | Fm-3m | 3.5238 | 1.85 | 42 |
ZrO2 | P21/c | a = 5.1507 b = 5.2028 c = 5.3156 | n.a. | ||
Ni-P/ZrO2/200 °C 2 h | Ni | Fm-3m | 3.5238 | 2.58 | 58 |
ZrO2 | P21/c | a = 5.1507 b = 5.2028 c = 5.3156 | n.a. | ||
Ni-P/ZrO2/400 °C 1 h | Ni | Fm-3m | 3.5238 | 50.7 | 77 |
Ni3P | I-4 | a, b = 8.9520 c = 4.3880 | 56.5 | ||
ZrO2 | P21/c | a = 5.1507 b = 5.2028 c = 5.3156 | n.a. |
Specimen | Hardness (GPa) | Young’s Modulus (GPa) | H/E Ratio |
---|---|---|---|
Ni-P | 6.26 ± 0.24 | 138.9 ± 5.4 | 0.0451 ± 0.0025 |
Ni-P dehydrogenated | 6.93 ± 0.26 | 144.7 ± 6.9 | 0.0479 ± 0.0029 |
Ni-P/400 °C 1 h | 9.37 ± 0.47 | 181.6 ± 13.3 | 0.0516 ± 0.0046 |
Ni-P/400 °C 1 h dehydrogenated | 9.39 ± 0.31 | 174.4 ± 9.6 | 0.0538 ± 0.0035 |
Ni-P/ZrO2 | 6.56 ± 0.30 | 142.6 ± 5.3 | 0.0460 ± 0.0027 |
Ni-P/ZrO2 dehydrogenated | 7.10 ± 0.21 | 149.4 ± 13.3 | 0.0482 ± 0.0045 |
Ni-P/ZrO2/400 °C 1 h | 10.86 ± 0.87 | 198.0 ± 10.3 | 0.0548 ± 0.0052 |
Ni-P/ZrO2/400 °C 1 h dehydrogenated | 10.78 ± 0.52 | 189.5 ± 7.1 | 0.0569 ± 0.0035 |
Substrate (SandBlasted) | Ni-P | Ni-P/ZrO2 | Ni-P/ZrO2 Dehydrogenated | Ni-P/ZrO2/400 °C 1 h | Ni-P/ZrO2/400 °C 1 h Dehydrogenated | |
---|---|---|---|---|---|---|
Ra (µm) | 3.877 ± 0.312 | 3.128 ± 0.4288 | 2.486 ± 0.2376 | 2.429 ± 0.2350 | 2.133 ± 0.1229 | 2.114 ± 0.1137 |
Sample | Not Dehydrogenated | Dehydrogenated |
---|---|---|
Ni-P | 0.50 ± 0.02 | 0.47 ± 0.02 |
Ni-P/ZrO2 | 0.39 ± 0.03 | 0.45 ± 0.01 |
Ni-P/ZrO2/400 °C 1 h | 0.42 ± 0.03 | 0.36 ± 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pedrizzetti, G.; Baroni, E.; Gragnanini, M.; Bottacchiari, R.; Merlin, M.; Pulci, G.; Marra, F. Effect of Dehydrogenation and Heat Treatments on the Microstructure and Tribological Behavior of Electroless Ni-P Nanocomposite Coatings. Materials 2024, 17, 5657. https://doi.org/10.3390/ma17225657
Pedrizzetti G, Baroni E, Gragnanini M, Bottacchiari R, Merlin M, Pulci G, Marra F. Effect of Dehydrogenation and Heat Treatments on the Microstructure and Tribological Behavior of Electroless Ni-P Nanocomposite Coatings. Materials. 2024; 17(22):5657. https://doi.org/10.3390/ma17225657
Chicago/Turabian StylePedrizzetti, Giulia, Enrico Baroni, Michele Gragnanini, Rita Bottacchiari, Mattia Merlin, Giovanni Pulci, and Francesco Marra. 2024. "Effect of Dehydrogenation and Heat Treatments on the Microstructure and Tribological Behavior of Electroless Ni-P Nanocomposite Coatings" Materials 17, no. 22: 5657. https://doi.org/10.3390/ma17225657
APA StylePedrizzetti, G., Baroni, E., Gragnanini, M., Bottacchiari, R., Merlin, M., Pulci, G., & Marra, F. (2024). Effect of Dehydrogenation and Heat Treatments on the Microstructure and Tribological Behavior of Electroless Ni-P Nanocomposite Coatings. Materials, 17(22), 5657. https://doi.org/10.3390/ma17225657