In Situ Monitoring of Anodic Acidification Process Using 3D μ-XCT Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Accelerated Acidification Test
2.3. Three-Dimensional Inspection of the Sample After the Acceleration Test
2.4. Inspection of the Anodic Acidification-Affected Zone with Optical Microscope and Scanning Electron Microscope
3. Results
3.1. Evolution of the Driven Voltage
3.2. Growth Rate of the Anodic Acidification-Affected Zone
3.3. Three-Dimensional Reconstruction of the Anodic Acidification-Affected Zone
3.4. Optical and SEM Verification
4. Discussion
4.1. Calculation of the Faraday Current Efficiency
4.2. Anodic Acidification-Affected Zone Prediction Using Input Electrical Energy
5. Conclusions
- Anodic acidification caused calcium leaching in the cement paste between the primary/secondary interfaces, confirmed by the lower calcium-to-silicon ratio in the EDS spectrum.
- The acidification-affected zone could be identified as a lower X-ray attenuation zone in μ-XCT images or as a different color in optical microscope analyses.
- The average Faraday efficiency of the anodic current density was 7.9% at the end of the test, slightly higher than the empirical estimation given by Polder et al. [1]
- It was found that the volume affected by anodic acidification was proportional to the input electrical energy.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Polder, R.B.; Peelen, W.H. Service Life Aspects of Cathodic Protection of Concrete Structures. In Concrete Repair Practical Guide; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Zhu, J.-H.; Zhu, M.; Han, N.; Liu, W.; Xing, F. Electrical and Mechanical Performance of Carbon Fiber-Reinforced Polymer Used as the Impressed Current Anode Material. Materials 2014, 7, 5438–5453. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.-H.; Wei, L.; Zhu, M.; Sun, H.; Tang, L.; Xing, F. Polarization Induced Deterioration of Reinforced Concrete with CFRP Anode. Materials 2015, 8, 4316–4331. [Google Scholar] [CrossRef] [PubMed]
- Goyal, A.; Olorunnipa, E.K.; Pouya, H.S.; Ganjian, E.; Olubanwo, A.O. Potential and Current Distribution Across Different Layers of Reinforcement in Reinforced Concrete Cathodic Protection System—A Numerical Study. Constr. Build. Mater. 2020, 262, 120580. [Google Scholar] [CrossRef]
- Zhu, J.-H.; Zeng, C.; Su, M.; Zeng, Z.; Zhu, A. Effectiveness of a Dual-Functional Intervention Method on the Durability of Reinforced Concrete Beams in Marine Environment. Constr. Build. Mater. 2019, 222, 633–642. [Google Scholar] [CrossRef]
- Peelen, W.H.A.; Polder, R.B.; Redaelli, E.; Bertolini, L. Qualitative Model of Concrete Acidification Due to Cathodic Protection. Mater. Corros. 2008, 59, 81–89. [Google Scholar] [CrossRef]
- Liu, W.; Chang, R.; Li, X.; Du, Y.; Liu, J. Failure Analyses on a Flexible Anode Cathodic Protection System in a Station. Materials 2024, 17, 291. [Google Scholar] [CrossRef] [PubMed]
- Belleghem, B.V.; Maes, M.; Soetens, T. Throwing Power and Service Life of Galvanic Cathodic Protection with Embedded Discrete Anodes for Steel Reinforcement in Chloride Contaminated Concrete. Constr. Build. Mater. 2021, 310, 125187. [Google Scholar] [CrossRef]
- Guo, W.; Hu, J.; Ma, Y.; Huang, H.; Yin, S.; Wei, J.; Yu, Q. The Application of Novel Lightweight Functional Aggregates on the Mitigation of Acidification Damage in the External Anode Mortar during Cathodic Protection for Reinforced Concrete. Corros. Sci. 2020, 165, 108366. [Google Scholar] [CrossRef]
- Wilson, K.; Jawed, M.; Ngala, V. The Selection and Use of Cathodic Protection Systems for the Repair of Reinforced Concrete Structures. Constr. Build. Mater. 2013, 39, 19–25. [Google Scholar] [CrossRef]
- Anwar, M.S.; Sujitha, B.; Vedalakshmi, R. Light-Weight Cementitious Conductive Anode for Impressed Current Cathodic Protection of Steel Reinforced Concrete Application. Constr. Build. Mater. 2014, 71, 167–180. [Google Scholar] [CrossRef]
- Hu, J.; Wang, Y.; Zhang, Z.; Guo, W.; Ma, Y.; Zhu, W.; Wei, J.; Yu, Q. Evaluation on the Acidification Damage of the External Anode Mortar Induced by Impressed Current Cathodic Protection. Constr. Build. Mater. 2019, 229, 116869. [Google Scholar] [CrossRef]
- Polder, R.B.; Peelen, W.H.A.; Leggedoor, J.; Schuten, G. 22—Microscopy Study of the Interface between Concrete and the Conductive Coating Used as an Anode for Cathodic Protection. In Corrosion of Reinforcement in Concrete; Raupach, M., Ed.; European Federation of Corrosion (EFC) Series; Woodhead Publishing: Cambridge, UK, 2007; Volume 38, pp. 277–287. [Google Scholar]
- Zhang, E.Q.; Tang, L.; Bernin, D.; Jansson, H. Effect of the Paste–Anode Interface under Impressed Current Cathodic Protection in Concrete Structures. Mater. Corros. 2018, 69, 1104–1116. [Google Scholar] [CrossRef]
- Zhang, E.Q.; Abbas, Z.; Tang, L. Predicting Degradation of the Anode–Concrete Interface for Impressed Current Cathodic Protection in Concrete. Constr. Build. Mater. 2018, 185, 57–68. [Google Scholar] [CrossRef]
- Fang, G.; Ding, W.; Liu, Y.; Zhang, J.; Xing, F.; Dong, B. Identification of Corrosion Products and 3D Distribution in Reinforced Concrete Using X-Ray Micro Computed Tomography. Constr. Build. Mater. 2019, 207, 304–315. [Google Scholar] [CrossRef]
- Dong, B.; Fang, G.; Liu, Y.; Dong, P.; Zhang, J.; Xing, F.; Hong, S. Monitoring Reinforcement Corrosion and Corrosion-Induced Cracking by X-Ray Microcomputed Tomography Method. Cem. Concr. Res. 2017, 100, 311–321. [Google Scholar] [CrossRef]
- TM0294-2016; Standard Test Method Testing of Embeddable Impressed Current Anodes for Use in Cathodic Protection of Atmospherically Exposed Steel-Reinforced Concrete. NACE International: Houston, TX, USA, 2016.
- Hubbell, J.H.; Seltzer, S.M. X-ray Mass Attenuation Coefficients; Radiation Physics Division: Gaithersburg, MD, USA, 2004. [Google Scholar] [CrossRef]
- Li, W.; Pei, C.; Zhu, Y.; Zhu, J.-H. Effect of Chopped Carbon Fiber on Interfacial Behaviors of ICCP-SS System. Constr. Build. Mater. 2021, 275, 122117. [Google Scholar] [CrossRef]
Composition | Content (wt.%) |
---|---|
CaO | 63.51 |
SiO2 | 21.86 |
Al2O3 | 4.45 |
Fe2O3 | 2.35 |
MgO | 1.67 |
K2O | 0.55 |
Na2O | 0.26 |
SO3 | 2.91 |
TiO2 | 0.11 |
LOI * | 2.33 |
Composition | Content (wt.%) |
---|---|
Ca(OH)2 | 0.20 |
KOH | 1.00 |
NaOH | 2.45 |
KCl | 3.20 |
Deionized water | 93.15 |
Material | Gray Level |
---|---|
Air | 0–78 |
Acidification-affected zone | 79–132 |
Cement paste | 133–181 |
MMO-coated Ti anode | 240–246 |
Duration (Days) | Calculated Volume V (mm3) | |
---|---|---|
Primary Anode | Affected Zone | |
0 | 48.62 | 0 |
10 | 47.92 | 2.97 |
20 | 49.33 | 5.20 |
30 | 48.98 | 12.38 |
40 | 48.06 | 19.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, C.; Qin, S.; Deng, Z.; Zhu, M. In Situ Monitoring of Anodic Acidification Process Using 3D μ-XCT Method. Materials 2024, 17, 5662. https://doi.org/10.3390/ma17225662
Zeng C, Qin S, Deng Z, Zhu M. In Situ Monitoring of Anodic Acidification Process Using 3D μ-XCT Method. Materials. 2024; 17(22):5662. https://doi.org/10.3390/ma17225662
Chicago/Turabian StyleZeng, Chaoqun, Shanshan Qin, Zhijun Deng, and Miaochang Zhu. 2024. "In Situ Monitoring of Anodic Acidification Process Using 3D μ-XCT Method" Materials 17, no. 22: 5662. https://doi.org/10.3390/ma17225662
APA StyleZeng, C., Qin, S., Deng, Z., & Zhu, M. (2024). In Situ Monitoring of Anodic Acidification Process Using 3D μ-XCT Method. Materials, 17(22), 5662. https://doi.org/10.3390/ma17225662