Mechanical Behavior of Thin Ceramic Laminates on Central Incisors
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
3.1. Fracture Load
3.2. Stereomicroscopy and Scanning Electron Microscope
3.3. Lifetime Determination
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kelly, J.R. Dental ceramics: What is this stuff anyway? J. Am. Dent. Assoc. 2008, 139, S4–S7. [Google Scholar] [CrossRef]
- Fabbri, G.; Zarone, F.; Dellificorelli, G.; Cannistraro, G.; De Lorenzi, M.; Mosca, A.; Sorrentino, R. Clinical evaluation of 860 anterior and posterior lithium disilicate restorations: Retrospective study with a mean follow-up of 3 years and a maximum observational period of 6 years. Int. J. Periodontics Restor. Dent. 2014, 34, 165–177. [Google Scholar] [CrossRef] [PubMed]
- Kruzic, J.J.; Arsecularatne, J.A.; Tanaka, C.B.; Hoffman, M.J.; Cesar, P.F. Recent advances in understanding the fatigue and wear behavior of dental composites and ceramics. J. Mech. Behav. Biomed. Mater. 2018, 88, 504–533. [Google Scholar] [CrossRef]
- Griggs, J.A. Recent advances in materials for all-ceramic restorations. Dent. Clin. N. Am. 2007, 51, 713–727. [Google Scholar] [CrossRef] [PubMed]
- Dumfahrt, H.; Schaffer, H. Porcelain laminate veneers. A retrospective evaluation after 1 to 10 years of service: Part II—Clinical results. Int. J. Prosthodont. 2000, 13, 9–18. [Google Scholar] [PubMed]
- Blunck, U.; Fischer, S.; Hajtó, J.; Frei, S.; Frankenberger, R. Ceramic laminate veneers: Effect of preparation design and ceramic thickness on fracture resistance and marginal quality in vitro. Clin. Oral Investig. 2020, 24, 2745–2754. [Google Scholar] [CrossRef] [PubMed]
- Li, R.W.K.; Chow, T.W.; Matinlinna, J.P. Ceramic dental biomaterials and CAD/CAM technology: State of the art. J. Prosthodont. Res. 2014, 58, 208–216. [Google Scholar] [CrossRef]
- da Cunha, L.F.; Reis, R.; Santana, L.; Romanini, J.C.; Carvalho, R.M.; Furuse, A.Y. Ceramic veneers with minimum preparation. Eur. J. Dent. 2013, 7, 492. [Google Scholar] [CrossRef]
- Vanlıoğlu, B.A.; Kulak-Özkan, Y. Minimally invasive veneers: Current state of the art. Clin. Cosmet. Investig. Dent. 2014, 6, 101–107. [Google Scholar] [CrossRef]
- Cheng, Y.-Y.; Lee, W.-F.; Wang, J.-C.; Chu, T.-M.G.; Lai, J.-W.; Peng, P.-W. Characterization and optical properties of zirconia specimens and ultra-thin veneers fabricated by solvent-based slurry stereolithography with solvent and thermal debinding process. Ceram. Int. 2024, 50, 20358–20366. [Google Scholar] [CrossRef]
- Tafur-Zelada, C.M.; Carvalho, O.; Silva, F.S.; Henriques, B.; Özcan, M.; Souza, J.C. The influence of zirconia veneer thickness on the degree of conversion of resin-matrix cements: An integrative review. Clin. Oral Investig. 2021, 25, 3395–3408. [Google Scholar] [CrossRef] [PubMed]
- Friedman, M.J. Commentary. Survival rates for porcelain laminate veneers with special reference to the effect of preparation in dentin: A literature review. J. Esthet. Restor. Dent. 2012, 24, 266–267. [Google Scholar] [CrossRef]
- Peumans, M.; Van Meerbeek, B.; Lambrechts, P.; Vanherle, G. Porcelain veneers: A review of the literature. J. Dent. 2000, 28, 163–177. [Google Scholar] [CrossRef]
- Radz, G.M. Minimum thickness anterior porcelain restorations. Dent. Clin. N. Am. 2011, 55, 353–370. [Google Scholar] [CrossRef] [PubMed]
- Pini, N.P.; Aguiar, F.H.B.; Lima, D.A.N.L.; Lovadino, J.R.; Terada, R.S.S.; Pascotto, R.C. Advances in dental veneers: Materials, applications, and techniques. Clin. Cosmet. Investig. Dent. 2012, 4, 9–16. [Google Scholar] [PubMed]
- Strassler, H.E. Minimally invasive porcelain veneers: Indications for a conservative esthetic dentistry treatment modality. Gen. Dent. 2007, 55, 686–694, quiz 695. [Google Scholar]
- Rinke, S.; Fischer, C. Range of indications for translucent zirconia modifications: Clinical and technical aspects. Quintessence Int. 2013, 44, 557–566. [Google Scholar]
- Zhang, Y.; Kelly, J.R. Dental ceramics for restoration and metal veneering. Dent. Clin. 2017, 61, 797–819. [Google Scholar] [CrossRef]
- Ivoclar Vivadent. IPS e. Max Lithium Disilicate: The Future of All-Ceramic Dentistry—Material Science, Practical Applications, Keys to Success; Ivoclar Vivadent: Amherst, NY, USA, 2009; pp. 1–15. [Google Scholar]
- Fasbinder, D.J.; Dennison, J.B.; Heys, D.; Neiva, G. A clinical evaluation of chairside lithium disilicate CAD/CAM crowns. J. Am. Dent. Assoc. 2010, 141, 10S–14S. [Google Scholar] [CrossRef]
- Borba, M.; de Araújo, M.D.; de Lima, E.; Yoshimura, H.N.; Cesar, P.F.; Griggs, J.A.; Della Bona, Á. Flexural strength and failure modes of layered ceramic structures. Dent. Mater. 2011, 27, 1259–1266. [Google Scholar] [CrossRef]
- Attar, E.A.; Aldharrab, A.; Ajaj, R. Flexural Strength Properties of Five Different Monolithic Computer-Aided Design/Computer-Aided Manufacturing Ceramic Materials: An In Vitro Study. Cureus 2023, 15, e36958. [Google Scholar] [CrossRef]
- Bottino, M.A.; Salazar-Marocho, S.M.; Leite, F.P.; Vasquez, V.C.; Valandro, L.F. Flexural Strength of Glass-Infiltrated Zirconia/Alumina-Based Ceramics and Feldspathic Veneering Porcelains. J. Prosthodont. 2009, 18, 417–420. [Google Scholar] [CrossRef] [PubMed]
- Giordano, R. Materials for chairside CAD/CAM–produced restorations. J. Am. Dent. Assoc. 2006, 137, 14S–21S. [Google Scholar] [CrossRef]
- Conrad, H.J.; Seong, W.-J.; Pesun, I.J. Current ceramic materials and systems with clinical recommendations: A systematic review. J. Prosthet. Dent. 2007, 98, 389–404. [Google Scholar] [CrossRef] [PubMed]
- Camposilvan, E.; Leone, R.; Gremillard, L.; Sorrentino, R.; Zarone, F.; Ferrari, M.; Chevalier, J. Aging resistance, mechanical properties and translucency of different yttria-stabilized zirconia ceramics for monolithic dental crown applications. Dent. Mater. 2018, 34, 879–890. [Google Scholar] [CrossRef] [PubMed]
- Denry, I. How and when does fabrication damage adversely affect the clinical performance of ceramic restorations? Dent. Mater. 2013, 29, 85–96. [Google Scholar] [CrossRef]
- Stawarczyk, B.; Özcan, M.; Hallmann, L.; Ender, A.; Mehl, A.; Hämmerlet, C.H. The effect of zirconia sintering temperature on flexural strength, grain size, and contrast ratio. Clin. Oral Investig. 2013, 17, 269–274. [Google Scholar] [CrossRef]
- Gonzaga, C.C.; Cesar, P.F.; Miranda, W.G.; Yoshimura, H.N. Slow crack growth and reliability of dental ceramics. Dent. Mater. 2011, 27, 394–406. [Google Scholar] [CrossRef]
- Zhang, Y.; Sailer, I.; Lawn, B.R. Fatigue of dental ceramics. J. Dent. 2013, 41, 1135–1147. [Google Scholar] [CrossRef]
- Kelly, J.R.; Benetti, P.; Rungruanganunt, P.; Della Bona, A. The slippery slope–critical perspectives on in vitro research methodologies. Dent. Mater. 2012, 28, 41–51. [Google Scholar] [CrossRef]
- Scherrer, S.S.; Quinn, J.B.; Quinn, G.D.; Wiskott, H.A. Fractographic ceramic failure analysis using the replica technique. Dent. Mater. 2007, 23, 1397–1404. [Google Scholar] [CrossRef] [PubMed]
- Lohbauer, U.; Belli, R.; Cune, M.S.; Schepke, U. Fractography of clinically fractured, implant-supported dental computer-aided design and computer-aided manufacturing crowns. SAGE Open Med. Case Rep. 2017, 5, 2050313X17741015. [Google Scholar] [CrossRef] [PubMed]
- Chieruzzi, M.; Rallini, M.; Pagano, S.; Eramo, S.; D’Errico, P.; Torre, L.; Kenny, J.M. Mechanical effect of static loading on endodontically treated teeth restored with fiber-reinforced posts. J. Biomed. Mater. Res. Part B Appl. Biomater. 2014, 102, 384–394. [Google Scholar] [CrossRef] [PubMed]
- Schweiger, J.; Erdelt, K.-J.; Graf, T.; Sciuk, T.; Edelhoff, D.; Güth, J.-F. The Fracture Load as a Function of the Material Thickness: The Key to Computing the Strength of Monolithic All-Ceramic Materials? Materials 2023, 16, 1997. [Google Scholar] [CrossRef]
- Adabo, G.L.; Longhini, D.; Baldochi, M.R.; Bergamo, E.T.P.; Bonfante, E.A. Reliability and lifetime of lithium disilicate, 3Y-TZP, and 5Y-TZP zirconia crowns with different occlusal thicknesses. Clin. Oral Investig. 2023, 27, 3827–3838. [Google Scholar] [CrossRef]
- Wolfart, S.; Eschbach, S.; Scherrer, S.; Kern, M. Clinical outcome of three-unit lithium-disilicate glass–ceramic fixed dental prostheses: Up to 8 years results. Dent. Mater. 2009, 25, e63–e71. [Google Scholar] [CrossRef]
- Ioannidis, A.; Mühlemann, S.; Özcan, M.; Hüsler, J.; Hämmerle, C.H.; Benic, G.I. Ultra-thin occlusal veneers bonded to enamel and made of ceramic or hybrid materials exhibit load-bearing capacities not different from conventional restorations. J. Mech. Behav. Biomed. Mater. 2019, 90, 433–440. [Google Scholar] [CrossRef]
- Zarone, F.; Di Mauro, M.I.; Ausiello, P.; Ruggiero, G.; Sorrentino, R. Current status on lithium disilicate and zirconia: A narrative review. BMC Oral Health 2019, 19, 134. [Google Scholar] [CrossRef]
- Levartovsky, S.; Bohbot, H.; Shem-Tov, K.; Brosh, T.; Pilo, R. Effect of different surface treatments of lithium disilicate on the adhesive properties of resin cements. Materials 2021, 14, 3302. [Google Scholar] [CrossRef]
- Phark, J.H.; Duarte, S., Jr. Microstructural considerations for novel lithium disilicate glass ceramics: A review. J. Esthet. Restor. Dent. 2022, 34, 92–103. [Google Scholar] [CrossRef]
- Talibi, M.; Kaur, K.; Parmar, H. Do you know your ceramics? Part 2: Feldspathic ceramics. Br. Dent. J. 2022, 232, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Skjold, A.; Schriwer, C.; Gjerdet, N.R.; Øilo, M. Fractographic analysis of 35 clinically fractured bi-layered and monolithic zirconia crowns. J. Dent. 2022, 125, 104271. [Google Scholar] [CrossRef]
- Scherrer, S.S.; Lohbauer, U.; Della Bona, A.; Vichi, A.; Tholey, M.J.; Kelly, J.R.; van Noort, R.; Cesar, P.F. ADM guidance—Ceramics: Guidance to the use of fractography in failure analysis of brittle materials. Dent. Mater. 2017, 33, 599–620. [Google Scholar] [CrossRef] [PubMed]
- Fouda, A.M.; Atta, O.; Kassem, A.S.; Desoky, M.; Bourauel, C. Wear behavior and abrasiveness of monolithic CAD/CAM ceramics after simulated mastication. Clin. Oral Investig. 2022, 26, 6593–6605. [Google Scholar] [CrossRef] [PubMed]
- Gonzaga, C.C.; Yoshimura, H.N.; Cesar, P.F.; Miranda, W.G. Subcritical crack growth in porcelains, glass-ceramics, and glass-infiltrated alumina composite for dental restorations. J. Mater. Sci. Mater. Med. 2009, 20, 1017–1024. [Google Scholar] [CrossRef]
- Yoshimura, H.N.; Cesar, P.F.; Soki, F.N.; Gonzaga, C.C. Stress intensity factor threshold in dental porcelains. J. Mater. Sci. Mater. Med. 2008, 19, 1945–1951. [Google Scholar] [CrossRef]
- Guazzato, M.; Albakry, M.; Ringer, S.P.; Swain, M.V. Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part II. Zirconia-based dental ceramics. Dent. Mater. 2004, 20, 449–456. [Google Scholar] [CrossRef]
- Martins, L.; Lorenzoni, F.; Farias, B.; Lopes, L.; Bonfante, G.; Rubo, J. Biomechanical behavior of dental ceramics. Cerâmica 2010, 56, 148–155. [Google Scholar] [CrossRef]
- Ritter, R.G. Multifunctional uses of a novel ceramic-lithium disilicate. J. Esthet. Restor. Dent. 2010, 22, 332–341. [Google Scholar] [CrossRef]
- Belli, R.; Geinzer, E.; Muschweck, A.; Petschelt, A.; Lohbauer, U. Mechanical fatigue degradation of ceramics versus resin composites for dental restorations. Dent. Mater. 2014, 30, 424–432. [Google Scholar] [CrossRef]
- Hooi, P.; Addison, O.; Fleming, G. Strength determination of brittle materials as curved monolithic structures. J. Dent. Res. 2014, 93, 412–416. [Google Scholar] [CrossRef]
- Rekow, D.; Thompson, V.P. Engineering long term clinical success of advanced ceramic prostheses. J. Mater. Sci. Mater. Med. 2007, 18, 47–56. [Google Scholar] [CrossRef]
- de Kok, P.; Pereira, G.K.; Fraga, S.; de Jager, N.; Venturini, A.B.; Kleverlaan, C.J. The effect of internal roughness and bonding on the fracture resistance and structural reliability of lithium disilicate ceramic. Dent. Mater. 2017, 33, 1416–1425. [Google Scholar] [CrossRef] [PubMed]
- Arora, A.; Upadhyaya, V.; Arora, S.J.; Jain, P.; Yadav, A. Evaluation of fracture resistance of ceramic veneers with different preparation designs and loading conditions: An: In vitro: Study. J. Indian Prosthodont. Soc. 2017, 17, 325–331. [Google Scholar] [PubMed]
- Tian, T.; Tsoi, J.K.-H.; Matinlinna, J.P.; Burrow, M.F. Aspects of bonding between resin luting cements and glass ceramic materials. Dent. Mater. 2014, 30, e147–e162. [Google Scholar] [CrossRef] [PubMed]
- Sato, N.; Takahashi, K. Evaluation of fracture strength of ceramics containing small surface defects introduced by focused ion beam. Materials 2018, 11, 457. [Google Scholar] [CrossRef] [PubMed]
- Krummel, A.; Garling, A.; Sasse, M.; Kern, M. Influence of bonding surface and bonding methods on the fracture resistance and survival rate of full-coverage occlusal veneers made from lithium disilicate ceramic after cyclic loading. Dent. Mater. 2019, 35, 1351–1359. [Google Scholar] [CrossRef]
- Huang, X.; Zou, L.; Yao, R.; Wu, S.; Li, Y. Effect of preparation design on the fracture behavior of ceramic occlusal veneers in maxillary premolars. J. Dent. 2020, 97, 103346. [Google Scholar] [CrossRef]
- Soriano-Valero, S.; Román-Rodriguez, J.-L.; Agustín-Panadero, R.; Bellot-Arcís, C.; Fons-Font, A.; Fernández-Estevan, L. Systematic review of chewing simulators: Reality and reproducibility of in vitro studies. J. Clin. Exp. Dent. 2020, 12, e1189. [Google Scholar] [CrossRef]
Ceramic | n | Flexural Strenght | Chewing Simulation |
---|---|---|---|
Lithium disilicate (Ivoclar IPS e.max CAD) | 9 | 4 | 5 |
Feldspathic porcelain (Vita Mark II) | 9 | 4 | 5 |
Condition | Antagonist | Load | Cycle Type |
---|---|---|---|
Condition 1 | Natural tooth | 40 N | Incision |
Condition 2 | Natural tooth | 30 N | Incision |
Condition 3 | Natural tooth | 30 N | Sliding |
Condition 4 | Metal roller | 30 N | Sliding |
Condition 5 | Metal roller | 20 N | Sliding |
Material | Fracture Load (N) |
---|---|
Lithium disilicate (IPS e.max CAD) | 431.8 ± 217.9 (51%) |
Porcelain (Vita Mark II) | 454.4 ± 72.1 (16%) |
Antagonist | Load (N) | Cycle Type | Number of Cycles to Fracture | Fracture Pattern |
---|---|---|---|---|
Natural tooth | 40 | Incision | 2534 | Fracture of the antagonist tooth |
30 | 10,467 | Fracture of the antagonist tooth | ||
Sliding | 103,772 | Excessive wear of the antagonist tooth | ||
Metal roller | 30 | Sliding | 5784 | Fracture of the thin ceramic laminate |
20 | 536,818 | Excessive wear of the antagonist |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Favero, S.S.; Monteiro, K.N.; Rodrigues, A.; Cestari, K.M.; Jurado, C.A.; Alhotan, A.; Cesar, P.F. Mechanical Behavior of Thin Ceramic Laminates on Central Incisors. Materials 2024, 17, 5663. https://doi.org/10.3390/ma17225663
Favero SS, Monteiro KN, Rodrigues A, Cestari KM, Jurado CA, Alhotan A, Cesar PF. Mechanical Behavior of Thin Ceramic Laminates on Central Incisors. Materials. 2024; 17(22):5663. https://doi.org/10.3390/ma17225663
Chicago/Turabian StyleFavero, Stephanie Soares, Kelli Nunes Monteiro, Aline Rodrigues, Ketuly Marques Cestari, Carlos Alberto Jurado, Abdulaziz Alhotan, and Paulo Francisco Cesar. 2024. "Mechanical Behavior of Thin Ceramic Laminates on Central Incisors" Materials 17, no. 22: 5663. https://doi.org/10.3390/ma17225663
APA StyleFavero, S. S., Monteiro, K. N., Rodrigues, A., Cestari, K. M., Jurado, C. A., Alhotan, A., & Cesar, P. F. (2024). Mechanical Behavior of Thin Ceramic Laminates on Central Incisors. Materials, 17(22), 5663. https://doi.org/10.3390/ma17225663