Research Progress in Shape-Control Methods for Wire-Arc-Directed Energy Deposition
Abstract
:1. Introduction
2. Brief Background of WA-DED and Its Shape Control Issues
- In general, the technical characteristics of WA-DED make it possible to deposit nearly all metallic materials [55,56]. However, during the deposition, several challenges may arise, such as excessive heat input, uneven heat distribution, weak confinement of the molten pool, and complex deposition path. If not properly controlled, these can lead to reduced forming accuracy and surface quality of deposition metal parts. Specifically, there are three main types of problems: During the deposition process, parts undergo repeatedly heating as they are built up layer by layer. This cycles of heating and cooling creates a complex temperature field. When thermal stress and phase transformation stress exceed the local yield strength of the part at a given temperature, macro deformation occurs, leading to reduced forming accuracy [57,58].
- The deposition and forming process of molten metal undergoes the intricate metal transfer and weakly constrained molten pool flow and solidification, naturally resulting in undulating curved surfaces rather than smooth ones. This results in relatively high surface flatness or roughness, leading to inherent deviations from the expected part dimensions.
- The layer-by-layer deposited beads are commonly under weak confinement, and deviations in the cooling rate, whether the too fast or too slow, can cause deviations in layer height and width from expectations, affecting the dimensional accuracy of the part.
3. Process Parameters Control Strategies
3.1. Deposition Current, Arc Voltage, Travel Speed, and Wire Feed Speed
3.2. Heat Input
3.3. Welding Torch Orientation
3.4. Control of Droplet Behavior
3.5. Inter-Layer Temperature and Preheating
3.6. Substrate Design
3.7. Surface Tension and the Related Marangoni Effects
4. Deposition Path Optimization
5. Auxiliary Energy and Mechanical Fields
6. Hybrid Additive and Subtractive Processing
7. Conclusions
- The WA-DED process based on different types of arc welding technology has distinct process windows. The comprehensive effects of electrical parameters can be studied using the variable of heat input. Excessive heat input can cause thermal stress and deformation in parts. When the wire feeding process is decoupled from the arc, such as in GTA-based and PA-based DED processes, the wire feed rate significantly affects deposition layer height, while the deposition current largely influences layer width.
- When depositing parts with large inclination angles and overhanging structural features, the welding torch angle can be adjusted to prevent the molten pool from sagging. The application of auxiliary energy fields to alter the force state of the droplet and molten pool can also improve the forming accuracy of the deposited weld bead and the whole additively manufactured part.
- Regulating droplet size and transfer frequency can directly affect the forming accuracy and surface quality of WA-DED parts. This influence is often realized by altering the droplet’s interaction with the molten pool. Additionally, GTA-based DED with side wire feeding may lead to deposition deviation, necessitating optimization of wire feeding control methods and regulation of droplet landing locations.
- Controlling heat input, preheating the substrate, and forced cooling can all regulate inter-layer temperature. Essentially, these methods are employed to reduce the thermal gradient in the additively manufactured part, thereby reducing deformation caused by thermal stress. Moreover, the design of substrate thickness and structure can alter the substrate’s heat dissipation characteristics and restraint effects, meeting the requirements for additive manufacturing with low residual stress and deformation.
- Different deposition paths can lead to variations in the temperature distribution and stress state within the deposited parts, thereby affecting deformation. An optimal path planning strategy should aim to minimize the number of turnarounds and arc initiation points. In multi-layer additive manufacturing processes, the reverse directional deposition is frequently applied. The design of spacing between adjacent additive weld beads should consider bead shift caused by surface tension.
- The application of different auxiliary fields in WA-DED is a current research hotspot. Longitudinal magnetic field helps increase the width-to-height ratio of deposited beads, improving lap joint morphology and the flatness of deposited layers. The application of ultrasound in WA-DED process can reduce or even eliminate residual tensile stress. Rolling combined with WA-DED can improve the forming accuracy of deposited layers, but it is more challenging to apply to parts with corners or tortuous features. Laser shock peening and shot peening are suitable for stress relief treatment on the surface and newly deposited additive weld beads. More lightweight, flexible, and accessible field-assisted WA-DED technologies have a promising future.
- In the field of high-precision manufacturing, subtractive post-processing such as machining is indispensable. Hybrid additive and subtractive processing and even integrated additive-subtractive manufacturing method will be popular research directions.
Author Contributions
Funding
Conflicts of Interest
References
- Karakurt, I.; Lin, L. 3D Printing Technologies: Techniques, Materials, and Post-Processing. Curr. Opin. Chem. Eng. 2020, 28, 134–143. [Google Scholar] [CrossRef]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.Q.; Hui, D. Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges. Compos. Part B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Cunningham, C.R.; Flynn, J.M.; Shokrani, A.; Dhokia, V.; Newman, S.T. Invited Review Article: Strategies and Processes for High Quality Wire Arc Additive Manufacturing. Addit. Manuf. 2018, 22, 672–686. [Google Scholar] [CrossRef]
- Adeyemi, A.; Akinlabi, E.T.; Mahamood, R.M. Powder Bed Based Laser Additive Manufacturing Process of Stainless Steel: A Review. Mater. Today Proc. 2018, 5, 18510–18517. [Google Scholar] [CrossRef]
- Gibson, I.; Rosen, D.; Stucker, B. Directed Energy Deposition Processes. In Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing; Gibson, I., Rosen, D., Stucker, B., Eds.; Springer New York: New York, NY, USA, 2015; pp. 245–268. ISBN 978-1-4939-2113-3. [Google Scholar]
- ASTM F3413-2019; Guide for Additive Manufacturing—Design—Directed Energy Deposition. ASTM International: West Conshohocken, PA, USA, 2019.
- Zhu, Y.; Chen, B.; Tang, H.; Cheng, X.; Wang, H.; Li, J. Influence of Heat Treatments on Microstructure and Mechanical Properties of Laser Additive Manufacturing Ti-5Al-2Sn-2Zr-4Mo-4Cr Titanium Alloy. Trans. Nonferrous Met. Soc. China 2018, 28, 36–46. [Google Scholar] [CrossRef]
- Fan, W.; Tan, H.; Zhang, F.; Feng, Z.; Wang, Y.; Zhang, L.-C.; Lin, X.; Huang, W. Overcoming the Limitation of In-Situ Microstructural Control in Laser Additive Manufactured Ti–6Al–4V Alloy to Enhanced Mechanical Performance by Integration of Synchronous Induction Heating. J. Mater. Sci. Technol. 2021, 94, 32–46. [Google Scholar] [CrossRef]
- Zhang, J.; Song, B.; Wei, Q.; Bourell, D.; Shi, Y. A Review of Selective Laser Melting of Aluminum Alloys: Processing, Microstructure, Property and Developing Trends. J. Mater. Sci. Technol. 2019, 35, 270–284. [Google Scholar] [CrossRef]
- Frazier, W.E. Metal Additive Manufacturing: A Review. J. Mater. Eng. Perform. 2014, 23, 1917–1928. [Google Scholar] [CrossRef]
- Weglowski, M.; Błacha, S.; Jachym, R.; Dworak, J.; Rykała, J. Additive Manufacturing with Wire—Comparison of Processes. AIP Conf. Proc. 2019, 2113, 150016. [Google Scholar]
- Navarro, M.; Matar, A.; Diltemiz, S.F.; Eshraghi, M. Development of a Low-Cost Wire Arc Additive Manufacturing System. J. Manuf. Mater. Process. 2022, 6, 3. [Google Scholar] [CrossRef]
- Alkahari, M.R. Design and Development of A Low-Cost 3D Metal Printer. J. Mech. Eng. Res. Dev. 2018, 41, 47–54. [Google Scholar]
- Anzalone, G.C.; Zhang, C.; Wijnen, B.; Sanders, P.G.; Pearce, J.M. A Low-Cost Open-Source Metal 3-D Printer. IEEE Access 2013, 1, 803–810. [Google Scholar] [CrossRef]
- Tomar, B.; Shiva, S.; Nath, T. A Review on Wire Arc Additive Manufacturing: Processing Parameters, Defects, Quality Improvement and Recent Advances. Mater. Today Commun. 2022, 31, 103739. [Google Scholar] [CrossRef]
- Vartanian, K.; Brewer, L.; Manley, K.; Cobbs, T. Powder Bed Fusion vs. Directed Dnergy Deposition Benchmark Study: Mid-size Part with Simple Geometry. Optomec Corp. 2018. Available online: https://optomec.com/wp-content/uploads/2018/06/PBF-vs-DED-STUDY_Final_PDF.pdf (accessed on 14 November 2024).
- Martina, F.; Williams, S. Wire+arc Additive Manufacturing vs. Traditional Machining from Solid: A Cost Comparison. Mater. Sci. Technol. 2015, 32, 17. [Google Scholar]
- Svetlizky, D.; Das, M.; Zheng, B.; Vyatskikh, A.L.; Bose, S.; Bandyopadhyay, A.; Schoenung, J.M.; Lavernia, E.J.; Eliaz, N. Directed Energy Deposition (DED) Additive Manufacturing: Physical Characteristics, Defects, Challenges and Applications. Mater. Today 2021, 49, 271–295. [Google Scholar] [CrossRef]
- Wang, Z.; Fu, B.; Wang, Y. Research progress of additive manufacturing of magnesium alloys. Chin. J. Nonferrous Met. 2021, 31, 3093–3105. [Google Scholar]
- Unocic, R.R.; DuPont, J.N. Process Efficiency Measurements in the Laser Engineered Net Shaping Process. Metall. Mater. Trans. B 2004, 35, 143–152. [Google Scholar] [CrossRef]
- Pierron, N.; Sallamand, P.; Matteï, S. Study of Magnesium and Aluminum Alloys Absorption Coefficient during Nd:YAG Laser Interaction. Appl. Surf. Sci. 2007, 253, 3208–3214. [Google Scholar] [CrossRef]
- Bhuvanesh Kumar, M.; Sathiya, P. Methods and Materials for Additive Manufacturing: A Critical Review on Advancements and Challenges. Thin-Walled Struct. 2021, 159, 107228. [Google Scholar] [CrossRef]
- Wang, C.; Wang, J.; Bento, J.; Ding, J.; Pardal, G.; Chen, G.; Qin, J.; Suder, W.; Williams, S. A Novel Cold Wire Gas Metal Arc (CW-GMA) Process for High Productivity Additive Manufacturing. Addit. Manuf. 2023, 73, 103681. [Google Scholar] [CrossRef]
- Ding, D.; Pan, Z.; Cuiuri, D.; Li, H. Wire-Feed Additive Manufacturing of Metal Components: Technologies, Developments and Future Interests. Int. J. Adv. Manuf. Technol. 2015, 81, 465–481. [Google Scholar] [CrossRef]
- Braszczyńska-Malik, K.N.; Mróz, M. Gas-Tungsten Arc Welding of AZ91 Magnesium Alloy. J. Alloys Compd. 2011, 509, 9951–9958. [Google Scholar] [CrossRef]
- Costello, S.C.A.; Cunningham, C.R.; Xu, F.; Shokrani, A.; Dhokia, V.; Newman, S.T. The State-of-the-Art of Wire Arc Directed Energy Deposition (WA-DED) as an Additive Manufacturing Process for Large Metallic Component Manufacture. Int. J. Comput. Integr. Manuf. 2023, 36, 469–510. [Google Scholar] [CrossRef]
- Ralph, B. Method of Making Decorative Articles. U.S. Patent 1,533,300, 14 April 1925. [Google Scholar]
- Derekar, K.S. A Review of Wire Arc Additive Manufacturing and Advances in Wire Arc Additive Manufacturing of Aluminium. Mater. Sci. Technol. 2018, 34, 895–916. [Google Scholar] [CrossRef]
- Kussmaul, K. High Quality Large Components ‘Shape Welded’ by a Saw Process. Weld. J. 1983, 62, 17–24. [Google Scholar]
- Suárez, A.; Ramiro, P.; Veiga, F.; Ballesteros, T.; Villanueva, P. Benefits of Aeronautical Preform Manufacturing through Arc-Directed Energy Deposition Manufacturing. Materials 2023, 16, 7177. [Google Scholar] [CrossRef]
- Liu, D.; Lee, B.; Babkin, A.; Chang, Y. Research Progress of Arc Additive Manufacture Technology. Materials 2021, 14, 1415. [Google Scholar] [CrossRef]
- www.aero-mag.com. Fast technology that adds up. 2020. Available online: https://www.aero-mag.com/harlow-fastech-metal-additive-manufacturing-02122020 (accessed on 14 November 2024).
- Omiyale, B.O.; Olugbade, T.O.; Abioye, T.E.; Farayibi, P.K. Wire Arc Additive Manufacturing of Aluminium Alloys for Aerospace and Automotive Applications: A Review. Mater. Sci. Technol. 2022, 38, 391–408. [Google Scholar] [CrossRef]
- Pant, H.; Arora, A.; Gopakumar, G.S.; Chadha, U.; Saeidi, A.; Patterson, A.E. Applications of Wire Arc Additive Manufacturing (WAAM) for Aerospace Component Manufacturing. Int. J. Adv. Manuf. Technol. 2023, 127, 4995–5011. [Google Scholar] [CrossRef]
- Ugla, A.A.; Khaudair, H.J.; Almusawi, A.R.J. Metal Inert Gas Welding-Based-Shaped Metal Deposition in Additive Layered Manufacturing: AReview. Int. J. Mech. Mater. Eng. 2019, 13, 244–257. [Google Scholar]
- Wu, B.; Pan, Z.; Ding, D.; Cuiuri, D.; Li, H.; Xu, J.; Norrish, J. A Review of the Wire Arc Additive Manufacturing of Metals: Properties, Defects and Quality Improvement. J. Manuf. Process. 2018, 35, 127–139. [Google Scholar] [CrossRef]
- Williams, S.W.; Martina, F.; Addison, A.C.; Ding, J.; Pardal, G.; Colegrove, P. Wire + Arc Additive Manufacturing. Mater. Sci. Technol. 2016, 32, 641–647. [Google Scholar] [CrossRef]
- Li, X.; Yan, H.; Sun, J.; Li, Y.; Zhang, G. A Curved Layering Algorithm Based on Voxelization and Geodesic Distance for Robotic GMA Additive Manufacturing. Virtual Phys. Prototyp. 2024, 19, e2346289. [Google Scholar] [CrossRef]
- GB/T 1184-1996; Dimensional and Geometrical Product Specifications. Geometrical Tolerancing—Geometrical Tolerance for Features without Individual Tolerance Indications. Standards Press of China: Beijing, China, 1996.
- Li, N.; Fan, D.; Huang, J.; Yu, S.; Yuan, W.; Han, M. Self-Adaptive Control System for Additive Manufacturing Using Double Electrode Micro Plasma Arc Welding. Chin. J. Mech. Eng. 2021, 34, 59. [Google Scholar] [CrossRef]
- Wang, Z.; Zimmer-Chevret, S.; Léonard, F.; Abba, G. Improvement Strategy for the Geometric Accuracy of Bead’s Beginning and End Parts in Wire-Arc Additive Manufacturing (WAAM). Int. J. Adv. Manuf. Technol. 2022, 118, 2139–2151. [Google Scholar] [CrossRef]
- Rosli, N.A.; Alkahari, M.R.; Norani, M.N.M.; Abdollah, M.F.B.; Paijan, L.H.; Furumoto, T. Evaluation on the Performance of Sustainable Wire Arc Additive Manufacturing Using Micro Plasma Arc Welding. IOP Conf. Ser. Earth Environ. Sci. 2023, 1267, 012020. [Google Scholar] [CrossRef]
- Xiong, X.; Zhang, H.; Wang, G. Metal Direct Prototyping by Using Hybrid Plasma Deposition and Milling. J. Mater. Process. Technol. 2009, 209, 124–130. [Google Scholar] [CrossRef]
- Shah, A.; Aliyev, R.; Zeidler, H.; Krinke, S. A Review of the Recent Developments and Challenges in Wire Arc Additive Manufacturing (WAAM) Process. J. Manuf. Mater. Process. 2023, 7, 97. [Google Scholar] [CrossRef]
- Tian, G.; Wang, W.; Chang, Q.; Ren, Z.; Wang, X.; Zhu, S. Research Progress and Prospect of Wire and Arc Additive Manufacture. Mater. Rep. 2021, 35, 23131–23141. [Google Scholar]
- Chen, J.H.; Chen, P.N.; Hua, P.H.; Chen, M.C.; Chang, Y.Y.; Wu, W. Deposition of Multicomponent Alloys on Low-Carbon Steel Using Gas Tungsten Arc Welding (GTAW) Cladding Process. Mater. Trans. 2009, 50, 689–694. [Google Scholar] [CrossRef]
- Zhang, A.; Xing, Y.; Yang, F.; Zhang, X.; Wang, H.; Yu, T. Development of a New Cold Metal Transfer Arc Additive Die Manufacturing Process. Adv. Mater. Sci. Eng. 2021, 2021, 9353820. [Google Scholar] [CrossRef]
- Shanker, H.; Wattal, R. A Comprehensive Survey on the Cold Metal Transfer Process for Additive Manufacturing. J. Phys. Conf. Ser. 2023, 2570, 012001. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, W.; Ouyang, J.; Kovacevic, R. Rapid Prototyping of 4043 Al-Alloy Parts by VP-GTAW. J. Mater. Process. Technol. 2004, 148, 93–102. [Google Scholar] [CrossRef]
- Zhong, H.; Qi, B.; Cong, B.; Qi, Z.; Sun, H. Microstructure and Mechanical Properties of Wire + Arc Additively Manufactured 2050 Al–Li Alloy Wall Deposits. Chin. J. Mech. Eng. 2019, 32, 92. [Google Scholar] [CrossRef]
- Gierth, M.; Henckell, P.; Ali, Y.; Scholl, J.; Bergmann, J.P. Wire Arc Additive Manufacturing (WAAM) of Aluminum Alloy AlMg5Mn with Energy-Reduced Gas Metal Arc Welding (GMAW). Materials 2020, 13, 2671. [Google Scholar] [CrossRef]
- Sadhya, S.; Khan, A.U.; Kumar, A.; Chatterjee, S.; Madhukar, Y.K. Development of Concurrent Multi Wire Feed Mechanism for WAAM-TIG to Enhance Process Efficiency. CIRP J. Manuf. Sci. Technol. 2024, 51, 313–323. [Google Scholar] [CrossRef]
- Reisgen, U.; Sharma, R.; Oster, L. Plasma Multiwire Technology with Alternating Wire Feed for Tailor-Made Material Properties in Wire and Arc Additive Manufacturing. Metals 2019, 9, 745. [Google Scholar] [CrossRef]
- Bento, J.B.; Wang, C.; Ding, J.; Williams, S. Process Control Methods in Cold Wire Gas Metal Arc Additive Manufacturing. Metals 2023, 13, 1334. [Google Scholar] [CrossRef]
- Wei, H.L.; Bhadeshia, H.K.D.H.; David, S.A.; DebRoy, T. Harnessing the Scientific Synergy of Welding and Additive Manufacturing. Sci. Technol. Weld. Join. 2019, 24, 361–366. [Google Scholar] [CrossRef]
- Treutler, K.; Wesling, V. The Current State of Research of Wire Arc Additive Manufacturing (WAAM): A Review. Appl. Sci. 2021, 11, 8619. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, X.; Chang, M.; Wang, H.; Ye, Y.; Deng, D. Effects of Yield Strength of Weld Metal Material Strain Hardening on Prediction Accuracy of Welding Residual Stress and Deformation in a Q345 Steel Joint. J. Mech. Eng. 2021, 57, 160–168. [Google Scholar]
- Sames, W.J.; List, F.A.; Pannala, S.; Dehoff, R.R.; Babu, S.S. The Metallurgy and Processing Science of Metal Additive Manufacturing. Int. Mater. Rev. 2016, 61, 315–360. [Google Scholar] [CrossRef]
- Joshi, A.; Anand, S. Geometric Complexity Based Process Selection for Hybrid Manufacturing. Procedia Manuf. 2017, 10, 578–589. [Google Scholar] [CrossRef]
- Xiong, J. Forming Characteristics in Multi-Layer Single-Bead GMA Additive Manufacturing and Control for Deposition Dimension. Doctoral Thesis, Harbin Institute of Technology, Harbin, China, 2014. [Google Scholar]
- Hu, Z.; Qin, X.; Shao, T.; Liu, H. Understanding and Overcoming of Abnormity at Start and End of the Weld Bead in Additive Manufacturing with GMAW. Int. J. Adv. Manuf. Technol. 2018, 95, 2357–2368. [Google Scholar] [CrossRef]
- Ouyang, J.H.; Wang, H.; Kovacevic, R. Rapid Prototyping of 5356-Aluminum Alloy Based on Variable Polarity Gas Tungsten Arc Welding: Process Control and Microstructure. Mater. Manuf. Process. 2002, 17, 103–124. [Google Scholar] [CrossRef]
- Wen, B. Forming Characteristics and Dimensional Control of Thin-Walled Components with Plasma Arc and Wire Additive Manufacture. Master’s Thesis, Nanjing University of Science & Technology, Nanjing, Jiangsu, China, 2016. [Google Scholar]
- Liu, D.; Ren, H.; Zhang, W. Research on Micro-Bundle Plasma Weld Arc Additive Manufacturing Process. Weld. Technol. 2019, 48, 89–92. [Google Scholar]
- Liu, Z.; Zhou, Q.; Zhou, W.; Zhang, M. Forming Dimension and Process Parameters Modeling and Model Optimization of Arc Additive Manufacture of High Strength Steel. Hot Work. Technol. 2019, 48, 156–158. [Google Scholar]
- Yildiz, A.S.; Davut, K.; Koc, B.; Yilmaz, O. Wire Arc Additive Manufacturing of High-Strength Low Alloy Steels: Study of Process Parameters and Their Influence on the Bead Geometry and Mechanical Characteristics. Int. J. Adv. Manuf. Technol. 2020, 108, 3391–3404. [Google Scholar] [CrossRef]
- Garmendia, I.; Flores, J.; Madarieta, M.; Lamikiz, A.; Uriarte, L.G.; Soriano, C. Geometrical Control of DED Processes Based on 3D Scanning Applied to the Manufacture of Complex Parts. Procedia CIRP 2020, 94, 425–429. [Google Scholar] [CrossRef]
- Du, J.; Ma, C.; Wei, Z. Dynamic response of surface morphology of aluminum (Al) deposited layers in wire and arc additive manufacturing based on visual sensing. J. Zhejiang Univ. (Eng. Sci.) 2020, 54, 1481–1489. [Google Scholar]
- Doumanidis, C.; Kwak, Y.-M. Multivariable Adaptive Control of the Bead Profile Geometry in Gas Metal Arc Welding with Thermal Scanning. Int. J. Press. Vessel. Pip. 2002, 79, 251–262. [Google Scholar] [CrossRef]
- Xiong, J.; Zhang, G. Online Measurement of Bead Geometry in GMAW-Based Additive Manufacturing Using Passive Vision. Meas. Sci. Technol. 2013, 24, 115103. [Google Scholar] [CrossRef]
- Huang, C.; Wang, G.; Song, H.; Li, R.; Zhang, H. Rapid Surface Defects Detection in Wire and Arc Additive Manufacturing Based on Laser Profilometer. Measurement 2022, 189, 110503. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.; Li, P.; Male, A.T. Weld Deposition-Based Rapid Prototyping: A Preliminary Study. J. Mater. Process. Technol. 2003, 135, 347–357. [Google Scholar] [CrossRef]
- Xiong, J.; Zhang, G. Adaptive Control of Deposited Height in GMAW-Based Layer Additive Manufacturing. J. Mater. Process. Technol. 2014, 214, 962–968. [Google Scholar] [CrossRef]
- Franke, J.; Heinrich, F.; Reisch, R.T. Vision Based Process Monitoring in Wire Arc Additive Manufacturing (WAAM). J. Intell. Manuf. 2024. [Google Scholar] [CrossRef]
- Dinovitzer, M.; Chen, X.; Laliberte, J.; Huang, X.; Frei, H. Effect of Wire and Arc Additive Manufacturing (WAAM) Process Parameters on Bead Geometry and Microstructure. Addit. Manuf. 2019, 26, 138–146. [Google Scholar] [CrossRef]
- Alimardani, M.; Fallah, V.; Iravani-Tabrizipour, M.; Khajepour, A. Surface Finish in Laser Solid Freeform Fabrication of an AISI 303L Stainless Steel Thin Wall. J. Mater. Process. Technol. 2012, 212, 113–119. [Google Scholar] [CrossRef]
- Xiong, J.; Li, Y.; Li, R.; Yin, Z. Influences of Process Parameters on Surface Roughness of Multi-Layer Single-Pass Thin-Walled Parts in GMAW-Based Additive Manufacturing. J. Mater. Process. Technol. 2018, 252, 128–136. [Google Scholar] [CrossRef]
- Wang, L.; Chen, J.; Wu, C.; Gao, J. Backward Flowing Molten Metal in Weld Pool and Its Influence on Humping Bead in High-Speed GMAW. J. Mater. Process. Technol. 2016, 237, 342–350. [Google Scholar] [CrossRef]
- Nguyen Van, A.; Wu, D.; Tashiro, S.; Tanaka, M. Undercut Formation Mechanism in the Keyhole Plasma Arc Welding. Weld. J. 2019, 98, 204–212. [Google Scholar] [CrossRef]
- Meng, X.; Qin, G.; Zou, Z. Investigation of Humping Defect in High Speed Gas Tungsten Arc Welding by Numerical Modelling. Mater. Des. 2016, 94, 69–78. [Google Scholar] [CrossRef]
- Zeng, J.; Nie, W.; Li, X. The Influence of Heat Input on the Surface Quality of Wire and Arc Additive Manufacturing. Appl. Sci. 2021, 11, 10201. [Google Scholar] [CrossRef]
- Zhang, C.; Qiu, Z.; Zhu, H.; Wang, Z.; Muránsky, O.; Ionescu, M.; Pan, Z.; Xi, J.; Li, H. On the Effect of Heat Input and Interpass Temperature on the Performance of Inconel 625 Alloy Deposited Using Wire Arc Additive Manufacturing–Cold Metal Transfer Process. Metals 2022, 12, 46. [Google Scholar] [CrossRef]
- Sun, L.; Jiang, F.; Huang, R.; Yuan, D.; Su, Y.; Guo, C.; Wang, J. Investigation on the Process Window with Liner Energy Density for Single-Layer Parts Fabricated by Wire and Arc Additive Manufacturing. J. Manuf. Process. 2020, 56, 898–907. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, C.; Lu, J.; Bai, L.; Zhao, Z.; Han, J. Weld Reinforcement Analysis Based on Long-Term Prediction of Molten Pool Image in Additive Manufacturing. IEEE Access 2020, 8, 69908–69918. [Google Scholar] [CrossRef]
- Srivastava, S.; Garg, R.K.; Sachdeva, A.; Sharma, V.S. Distribution of Residual Stress in Wire-Arc Additively Manufactured Small-Scale Component: Single- Versus Multi-Level Heat Input. J. Manuf. Sci. Eng. 2022, 145, 4055569. [Google Scholar] [CrossRef]
- Geng, H.; Li, J.; Xiong, J.; Lin, X. Optimisation of Interpass Temperature and Heat Input for Wire and Arc Additive Manufacturing 5A06 Aluminium Alloy. Sci. Technol. Weld. Join. 2017, 22, 472–483. [Google Scholar] [CrossRef]
- Le, V.T.; Bui, M.C.; Nguyen, T.D.; Nguyen, V.A.; Nguyen, V.C. On the Connection of the Heat Input to the Forming Quality in Wire-and-Arc Additive Manufacturing of Stainless Steels. Vacuum 2023, 209, 111807. [Google Scholar] [CrossRef]
- Zamiela, C.; Stokes, R.; Tian, W.; Doude, H.; Priddy, M.; Bian, L. Physics-Informed Approximation of Internal Thermal History for Surface Deformation Predictions in Wire Arc Directed Energy Deposition. J. Manuf. Sci. Eng. 2024, 146, 4065416. [Google Scholar] [CrossRef]
- Schroepfer, D.; Scharf-Wildenhain, R.; Haelsig, A.; Wandtke, K.; Kromm, A.; Kannengiesser, T. Process-Related Influences and Correlations in Wire Arc Additive Manufacturing of High-Strength Steels. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1147, 012002. [Google Scholar] [CrossRef]
- Martina, F.; Ding, J.; Williams, S.; Caballero, A.; Pardal, G.; Quintino, L. Tandem Metal Inert Gas Process for High Productivity Wire Arc Additive Manufacturing in Stainless Steel. Addit. Manuf. 2019, 25, 545–550. [Google Scholar] [CrossRef]
- Xiong, J.; Lei, Y.; Chen, H.; Zhang, G. Fabrication of Inclined Thin-Walled Parts in Multi-Layer Single-Pass GMAW-Based Additive Manufacturing with Flat Position Deposition. J. Mater. Process. Technol. 2017, 240, 397–403. [Google Scholar] [CrossRef]
- Wang, T.; Yang, Z.; Li, L.; He, J. Research on forming and welding technology of thick wall structure arc added material manufacturing. Trans. China Weld. Inst. 2019, 40, 78–82. [Google Scholar]
- Kazanas, P.; Deherkar, P.; Almeida, P.; Lockett, H.; Williams, S. Fabrication of Geometrical Features Using Wire and Arc Additive Manufacture. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2012, 226, 1042–1051. [Google Scholar] [CrossRef]
- Fu, W.; Hu, S.; Yin, Y. Effect of Droplet Transition on Rapid Prototyping by P-MIG. J. Mech. Eng. 2009, 45, 95–99. [Google Scholar] [CrossRef]
- Huang, J.; Yuan, W.; Yu, S.; Zhang, L.; Yu, X.; Fan, D. Droplet Transfer Behavior in Bypass-Coupled Wire Arc Additive Manufacturing. J. Manuf. Process. 2019, 49, 397–412. [Google Scholar] [CrossRef]
- Luo, Y.; Zhu, L.; Han, J.; Xun, J.; Zhang, C. Analysis on the Characteristics of Metal Droplet Transferred by Projected Transfer Mode in Wire + Arc Additive Manufacturing Process. J. Mech. Eng. 2019, 55, 219–225. [Google Scholar] [CrossRef]
- Lü, F.; Wang, L.; Gao, Z.; Dou, Z.; Ben, Q.; Gao, C.; Zhan, X. Influence Mechanism of Arc Characteristics on Droplet Transfer Behavior in CMT-based Additive Manufacturing. J. Mech. Eng. 2023, 59, 267–281. [Google Scholar]
- Cao, M. Study of the effect of droplet oscillation momentum on the surface forming quality of Wire and Arc Additive Manufacturing. Master’s Thesis, Agriculture Engineering and Information Technology, Zhoushan, China, 2023. [Google Scholar]
- Li, L.; Zhang, G.; Zhu, Z.; Ren, Z.; Shi, Y.; Fan, D. Effect of wire feeding mode on additive forming precision of double-pulsed TIG process with stepped filling wire. Trans. China Weld. Inst. 2022, 43, 31–37. [Google Scholar]
- Gokhale, N.P.; Kala, P.; Sharma, V.; Palla, M. Effect of Deposition Orientations on Dimensional and Mechanical Properties of the Thin-Walled Structure Fabricated by Tungsten Inert Gas (TIG) Welding-Based Additive Manufacturing Process. J. Mech. Sci. Technol. 2020, 34, 701–709. [Google Scholar] [CrossRef]
- Wang, X.; Wang, A.; Li, Y. Study on the Deposition Accuracy of Omni-Directional GTAW-Based Additive Manufacturing. J. Mater. Process. Technol. 2020, 282, 116649. [Google Scholar] [CrossRef]
- Rodrigues, T.A.; Duarte, V.; Miranda, R.M.; Santos, T.G.; Oliveira, J.P. Current Status and Perspectives on Wire and Arc Additive Manufacturing (WAAM). Materials 2019, 12, 1121. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Jia, Y.; Chen, S.; Shi, J.; Li, F. Process Planning Strategy for Wire-Arc Additive Manufacturing: Thermal Behavior Considerations. Addit. Manuf. 2020, 32, 100935. [Google Scholar] [CrossRef]
- Alberti, E.A.; Bueno, B.M.P.; D’Oliveira, A.S.C.M. Additive Manufacturing Using Plasma Transferred Arc. Int. J. Adv. Manuf. Technol. 2016, 83, 1861–1871. [Google Scholar] [CrossRef]
- Cai, X.; Dong, B.; Yin, X.; Lin, S.; Fan, C. Influence of Preheating Temperatures on the Microstructures and Mechanical Properties of GTA Additive Manufactured TiAl Based Alloy. Trans. China Weld. Inst. 2021, 42, 14–21. [Google Scholar]
- Xiong, J.; Lei, Y.; Li, R. Finite Element Analysis and Experimental Validation of Thermal Behavior for Thin-Walled Parts in GMAW-Based Additive Manufacturing with Various Substrate Preheating Temperatures. Appl. Therm. Eng. 2017, 126, 43–52. [Google Scholar] [CrossRef]
- Shi, J.; Zhao, Y.; Chen, S.; Chi, X. Base-Layer Research on the Forming Width and Thermal Process for Tandem-GMAW Wire Arc Additive Manufacturing. J. Tianjin Univ. (Sci. Technol.) 2020, 53, 910–916. [Google Scholar]
- Mughal, M.P.; Fawad, H.; Mufti, R.A.; Siddique, M. Deformation Modelling in Layered Manufacturing of Metallic Parts Using Gas Metal Arc Welding: Effect of Process Parameters. Model. Simul. Mater. Sci. Eng. 2005, 13, 1187. [Google Scholar] [CrossRef]
- Hackenhaar, W.; Montevecchi, F.; Scippa, A.; Campatelli, G. Air-Cooling Influence on Wire Arc Additive Manufactured Surfaces. Key Eng. Mater. 2019, 813, 241–247. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, G.; Yin, Z.; Wu, L. A 3D Dynamic Analysis of Thermal Behavior during Single-Pass Multi-Layer Weld-Based Rapid Prototyping. J. Mater. Process. Technol. 2011, 211, 488–495. [Google Scholar] [CrossRef]
- Jiang, S.; Li, F. Effect of Interpass Temperature on Forming Quality of H13 Steel by Wire and Arc Additive Manufacture. J. Netshape Form. Eng. 2022, 14, 11–116. [Google Scholar]
- Ogino, Y.; Asai, S.; Hirata, Y. Numerical Simulation of WAAM Process by a GMAW Weld Pool Model. Weld. World 2018, 62, 393–401. [Google Scholar] [CrossRef]
- Shen, C.; Pan, Z.; Cuiuri, D.; Ding, D.; Li, H. Influences of Deposition Current and Interpass Temperature to the Fe3Al-Based Iron Aluminide Fabricated Using Wire-Arc Additive Manufacturing Process. Int. J. Adv. Manuf. Technol. 2017, 88, 2009–2018. [Google Scholar] [CrossRef]
- Wu, B.; Ding, D.; Pan, Z.; Cuiuri, D.; Li, H.; Han, J.; Fei, Z. Effects of Heat Accumulation on the Arc Characteristics and Metal Transfer Behavior in Wire Arc Additive Manufacturing of Ti6Al4V. J. Mater. Process. Technol. 2017, 250, 304–312. [Google Scholar] [CrossRef]
- Liu, S.; Farahmand, P.; Kovacevic, R. Optical Monitoring of High Power Direct Diode Laser Cladding. Opt. Laser Technol. 2014, 64, 363–376. [Google Scholar] [CrossRef]
- Tan, H. Research on temperature measurement and tissue control in laser rapid prototyping process. Doctoral Thesis, Northwestern Polytechnical University, Xi’an, China, 2005. [Google Scholar]
- Jorge, V.L.; Teixeira, F.R.; Scotti, A. Pyrometrical Interlayer Temperature Measurement in WAAM of Thin Wall: Strategies, Limitations and Functionality. Metals 2022, 12, 765. [Google Scholar] [CrossRef]
- Montevecchi, F.; Venturini, G.; Grossi, N.; Scippa, A.; Campatelli, G. Idle Time Selection for Wire-Arc Additive Manufacturing: A Finite Element-Based Technique. Addit. Manuf. 2018, 21, 479–486. [Google Scholar] [CrossRef]
- Bai, X.; Colegrove, P.; Ding, J.; Zhou, X.; Diao, C.; Bridgeman, P.; Hönnige, J.R.; Zhang, H.; Williams, S. Numerical Analysis of Heat Transfer and Fluid Flow in Multilayer Deposition of PAW-Based Wire and Arc Additive Manufacturing. Int. J. Heat Mass Transf. 2018, 124, 504–516. [Google Scholar] [CrossRef]
- Zhai, W.; Wu, N.; Zhou, W. Effect of Interpass Temperature on Wire Arc Additive Manufacturing Using High-Strength Metal-Cored Wire. Metals 2022, 12, 212. [Google Scholar] [CrossRef]
- Duan, M.; Peng, Y.; Zhou, Q.; Qian, W. Micro-Deformation P-TIG Wire and Arc Addictive Manufacture Under Water Bath. Trans. China Weld. Inst. 2018, 39, 113–116. [Google Scholar]
- Li, F.; Chen, S.; Shi, J.; Zhao, Y.; Tian, H. Thermoelectric Cooling-Aided Bead Geometry Regulation in Wire and Arc-Based Additive Manufacturing of Thin-Walled Structures. Appl. Sci. 2018, 8, 207. [Google Scholar] [CrossRef]
- Hackenhaar, W.; Mazzaferro, J.A.E.; Montevecchi, F.; Campatelli, G. An Experimental-Numerical Study of Active Cooling in Wire Arc Additive Manufacturing. J. Manuf. Process. 2020, 52, 58–65. [Google Scholar] [CrossRef]
- Yao, B.; Ma, L.; Chen, J.; Wang, Z. Numerical Simulation Analysis of Thermal Stress and Distortion of Typical Structural Parts via Wire and Arc. Mech. Sci. Technol. Aerosp. Eng. 2022, 41, 907–961. [Google Scholar]
- Ge, P.; Zhang, Z.; Niu, F.; Chen, J.; Liu, W.; Liu, Z. Substrate Design-Based Control of the Residual Distortion in Directed Energy Deposition Additive Manufacturing. J. Therm. Stress. 2023, 46, 22–42. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, D.; Wang, P.; Yan, M.; Yang, C.; Chen, Z.; Lu, J.; Lu, Z. Additive Manufacturing of Metals: Microstructure Evolution and Multistage Control. J. Mater. Sci. Technol. 2022, 100, 224–236. [Google Scholar] [CrossRef]
- Ghaffari, M.; Vahedi Nemani, A.; Rafieazad, M.; Nasiri, A. Effect of Solidification Defects and HAZ Softening on the Anisotropic Mechanical Properties of a Wire Arc Additive-Manufactured Low-Carbon Low-Alloy Steel Part. Jom 2019, 71, 4215–4224. [Google Scholar] [CrossRef]
- Hejripour, F.; Binesh, F.; Hebel, M.; Aidun, D.K. Thermal Modeling and Characterization of Wire Arc Additive Manufactured Duplex Stainless Steel. J. Mater. Process. Technol. 2019, 272, 58–71. [Google Scholar] [CrossRef]
- Boyer, R.R.; Welsch, G.; Collings, E.W. Materials Properties Handbook: Titanium Alloys; Springer: Berlin/Heidelberg, Germany, 1994. [Google Scholar]
- Wu, F.; Falch, K.V.; Guo, D.; English, P.; Drakopoulos, M.; Mirihanage, W. Time Evolved Force Domination in Arc Weld Pools. Mater. Des. 2020, 190, 108534. [Google Scholar] [CrossRef]
- Han, S.-W.; Cho, W.-I.; Na, S.-J.; Kim, C.-H. Influence of Driving Forces on Weld Pool Dynamics in GTA and Laser Welding. Weld. World 2013, 57, 257–264. [Google Scholar] [CrossRef]
- Tanaka, M.; Lowke, J.J. Predictions of Weld Pool Profiles Using Plasma Physics. J. Phys. D Appl. Phys. 2006, 40, R1. [Google Scholar] [CrossRef]
- Hu, J.; Guo, H.; Tsai, H.L. Weld Pool Dynamics and the Formation of Ripples in 3D Gas Metal Arc Welding. Int. J. Heat Mass Transf. 2008, 51, 2537–2552. [Google Scholar] [CrossRef]
- Wu, C.S. Welding Thermal Processes and Weld Pool Behaviors; Taylor & Francis: Boca Raton, FL, USA, 2010; ISBN 978-7-111-21962-0. [Google Scholar]
- Da Silva, L.J.; Teixeira, F.R.; Araújo, D.B.; Reis, R.P.; Scotti, A. Work Envelope Expansion and Parametric Optimization in WAAM with Relative Density and Surface Aspect as Quality Constraints: The Case of Al5Mg Thin Walls with Active Cooling. J. Manuf. Mater. Process. 2021, 5, 40. [Google Scholar] [CrossRef]
- Jia, C.; Liu, W.; Chen, M.; Guo, M.; Wu, S.; Wu, C. Investigation on Arc Plasma, Droplet, and Molten Pool Behaviours in Compulsively Constricted WAAM. Addit. Manuf. 2020, 34, 101235. [Google Scholar] [CrossRef]
- Chen, X.; Wang, C.; Ding, J.; Bridgeman, P.; Williams, S. A Three-Dimensional Wire-Feeding Model for Heat and Metal Transfer, Fluid Flow, and Bead Shape in Wire Plasma Arc Additive Manufacturing. J. Manuf. Process. 2022, 83, 300–312. [Google Scholar] [CrossRef]
- Mohebbi, M.S.; Kühl, M.; Ploshikhin, V. A Thermo-Capillary-Gravity Model for Geometrical Analysis of Single-Bead Wire and Arc Additive Manufacturing (WAAM). Int. J. Adv. Manuf. Technol. 2020, 109, 877–891. [Google Scholar] [CrossRef]
- Ríos, S.; Colegrove, P.A.; Martina, F.; Williams, S.W. Analytical Process Model for Wire + arc Additive Manufacturing. Addit. Manuf. 2018, 21, 651–657. [Google Scholar] [CrossRef]
- Ni, M.; Qin, X.; Hu, Z.; Ji, F.; Yang, S.; Wang, S. Forming Characteristics and Control Method of Weld Bead for GMAW on Curved Surface. Int. J. Adv. Manuf. Technol. 2022, 119, 1883–1908. [Google Scholar] [CrossRef]
- Chia, H.Y.; Wang, L.; Yan, W. Influence of Oxygen Content on Melt Pool Dynamics in Metal Additive Manufacturing: High-Fidelity Modeling with Experimental Validation. Acta Mater. 2023, 249, 118824. [Google Scholar] [CrossRef]
- Sahoo, P.; DeBroy, T.; Mcnallan, M.J. Surface Tension of Binary Metal-Surface Active Solute Systems under Conditions Relevant to Welding Metallurgy. Metall. Trans. 1988, 19B, 483–491. [Google Scholar] [CrossRef]
- Mills, K.C.; Su, Y.C. Review of Surface Tension Data for Metallic Elements and Alloys: Part 1—Pure Metals. Int. Mater. Rev. 2006, 51, 329–351. [Google Scholar] [CrossRef]
- Brooks, R.F.; Quested, P.N. The Surface Tension of Steels. J. Mater. Sci. 2005, 40, 2233–2238. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, Q.; Tsai, H.L. Modeling of the Effects of Surface-Active Elements on Flow Patterns and Weld Penetration. Metall. Trans. 2001, 32B, 145–161. [Google Scholar] [CrossRef]
- Aucott, L.; Dong, H.; Mirihanage, W.; Atwood, R.; Kidess, A.; Gao, S.; Wen, S.; Marsden, J.; Feng, S.; Tong, M.; et al. Revealing internal flow behaviour in arc welding and additive manufacturing of metals. Nat. Commun. 2018, 9, 5414. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Yue, Z.; Feng, J. Study on the Role of Deposition Path in Electron Beam Freeform Fabrication Process. Rapid Prototyp. J. 2017, 23, 1057–1068. [Google Scholar] [CrossRef]
- Somashekara, M.A.; Naveenkumar, M.; Kumar, A.; Viswanath, C.; Simhambhatla, S. Investigations into Effect of Weld-Deposition Pattern on Residual Stress Evolution for Metallic Additive Manufacturing. Int. J. Adv. Manuf. Technol. 2017, 90, 2009–2025. [Google Scholar] [CrossRef]
- Prashanth, K.G.; Scudino, S.; Eckert, J. Defining the Tensile Properties of Al-12Si Parts Produced by Selective Laser Melting. Acta Mater. 2017, 126, 25–35. [Google Scholar] [CrossRef]
- Yan, W.; Zhao, W.; Yue, Z. Study on the Role of Deposition Path in Additive Manufacturing Process. Aeronaut. Sci. Technol. 2018, 29, 58–66. [Google Scholar]
- Ma, G.; Zhao, G.; Li, Z.; Yang, M.; Xiao, W. Optimization Strategies for Robotic Additive and Subtractive Manufacturing of Large and High Thin-Walled Aluminum Structures. Int. J. Adv. Manuf. Technol. 2019, 101, 1275–1292. [Google Scholar] [CrossRef]
- Yang, D.; Wang, X.; Wang, Y.; Fang, J.; Wang, K. Surface Quality Evaluation of Multi-Bead Overlapping for High Nitrogen Steel by CMT Based Additive Manufacturing. Trans. China Weld. Inst. 2020, 41, 73–76. [Google Scholar]
- Huang, J.; Guan, Z.; Yu, S.; Yu, X.; Yuan, W.; Li, N.; Fan, D. A 3D Dynamic Analysis of Different Depositing Processes Used in Wire Arc Additive Manufacturing. Mater. Today Commun. 2020, 24, 101255. [Google Scholar] [CrossRef]
- Zhu, K.; Wang, J.; Zhang, W.; Zhu, X.; Lu, X. Effect of Deposition Strategies on Microstructures, Defects and Mechanical Properties of 5356 Aluminum Alloy by Wire Arc Additive Manufacturing. Trans. Nonferrous Met. Soc. China 2024, 34, 423–434. [Google Scholar] [CrossRef]
- Xiong, J.; Zhang, G.; Gao, H.; Wu, L. Modeling of Bead Section Profile and Overlapping Beads with Experimental Validation for Robotic GMAW-Based Rapid Manufacturing. Robot. Comput. -Integr. Manuf. 2013, 29, 417–423. [Google Scholar] [CrossRef]
- Ye, Y.; Zhou, Q.; Qin, W.; Zhang, X.; Wu, C. Study of Surface Morphology of High Nitrogen Steel—Stainless Steel Arc Additive. Mach. Build. Autom. 2019, 48, 42–45. [Google Scholar]
- Cao, Y.; Zhu, S.; Liang, X.; Wang, W. Overlapping Model of Beads and Curve Fitting of Bead Section for Rapid Manufacturing by Robotic MAG Welding Process. Robot. Comput. -Integr. Manuf. 2011, 27, 641–645. [Google Scholar] [CrossRef]
- Fang, X.; Bai, H.; Yao, Y.; Zhang, L.; Lu, B. Research on Multi-Bead Overlapping Process of Wire and Arc Additive Manufacturing Based on Cold Metal Transfer. J. Mech. Eng. 2020, 56, 141–147. [Google Scholar]
- Ding, D.; Pan, Z.; Cuiuri, D.; Li, H. A Multi-Bead Overlapping Model for Robotic Wire and Arc Additive Manufacturing (WAAM). Robot. Comput. -Integr. Manuf. 2015, 31, 101–110. [Google Scholar] [CrossRef]
- Li, Y. Forming Characteristics and Dimensional Control of Multi-Layer Multi-Bead Deposition using Gas Metal Arc Additive Manufacturing. Doctoral Thesis, Harbin Institute of Technology, Harbin, China, 2019. [Google Scholar]
- Lockett, H.; Ding, J.; Williams, S.; Martina, F. Design for Wire + Arc Additive Manufacture: Design Rules and Build Orientation Selection. J. Eng. Des. 2017, 28, 568–598. [Google Scholar] [CrossRef]
- Mehnen, J.; Ding, J.; Lockett, H.; Kazanas, P. Design for Wire and Arc Additive Layer Manufacture. In Proceedings of the Global Product Development; Bernard, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 721–727. [Google Scholar]
- Zheng, Y.; Li, Y.; Zhang, G.; Chen, X.; Li, C. A Conformal-Deposition Trajectory Planning Approach to Wire and Arc Additive Remanufacturing of Parts with Spatial Constraint Features. Electr. Weld. Mach. 2023, 53, 125–131. [Google Scholar]
- Kao, J.-H.; Prinz, F.B. Optimal Motion Planning for Deposition in Layered Manufacturing. In Proceedings of the DETC98, 18th Computers in Engineering Conference, Boston, MA, USA, 21 October 1998; Volume 6. [Google Scholar]
- Ding, D.; Pan, Z.; Cuiuri, D.; Li, H. A Practical Path Planning Methodology for Wire and Arc Additive Manufacturing of Thin-Walled Structures. Robot. Comput.-Integr. Manuf. 2015, 34, 8–19. [Google Scholar] [CrossRef]
- Li, J.; Cui, Q.; Pang, C.; Xu, P.; Luo, W.; Li, J. Integrated Vehicle Chassis Fabricated by Wire and Arc Additive Manufacturing: Structure Generation, Printing Radian Optimisation, and Performance Prediction. Virtual Phys. Prototyp. 2024, 19, e2301483. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, T.; Li, L.; Li, T. Forming Method and Technology of Arc Additive Manufacturing for Thick Wall Structural Parts. Trans. China Weld. Inst. 2019, 40, 100–105. [Google Scholar]
- Li, Y.; Meng, L.; Li, M.; Zhou, Y.; Liu, X.; Li, X.; Zhang, G. Allocation and Scheduling of Deposition Paths in a Layer for Multi-Robot Coordinated Wire and Arc Additive Manufacturing of Large-Scale Parts. Virtual Phys. Prototyp. 2024, 19, e2300680. [Google Scholar] [CrossRef]
- Mehnen, J.; Ding, J.; Lockett, H.; Kazanas, P. Design Study for Wire and Arc Additive Manufacture. Int. J. Prod. Dev. 2014, 19, 2–20. [Google Scholar] [CrossRef]
- Ding, D.; Shen, C.; Pan, Z.; Cuiuri, D.; Li, H.; Larkin, N.; van Duin, S. Towards an Automated Robotic Arc-Welding-Based Additive Manufacturing System from CAD to Finished Part. Comput. -Aided Des. 2016, 73, 66–75. [Google Scholar] [CrossRef]
- Venturini, G.; Montevecchi, F.; Scippa, A.; Campatelli, G. Optimization of WAAM Deposition Patterns for T-Crossing Features. Procedia CIRP 2016, 55, 95–100. [Google Scholar] [CrossRef]
- Jin, Y.; Du, J.; Ma, Z.; Liu, A.; He, Y. An Optimization Approach for Path Planning of High-Quality and Uniform Additive Manufacturing. Int. J. Adv. Manuf. Technol. 2017, 92, 651–662. [Google Scholar] [CrossRef]
- Tan, C.; Li, R.; Su, J.; Du, D.; Du, Y.; Attard, B.; Chew, Y.; Zhang, H.; Lavernia, E.J.; Fautrelle, Y.; et al. Review on Field Assisted Metal Additive Manufacturing. Int. J. Mach. Tools Manuf. 2023, 189, 104032. [Google Scholar] [CrossRef]
- Shan, Z.; Wang, Y.; Song, H.; Huang, J.; Haiou, Z.; Chen, X.; Huang, C.; Li, R. Effect of Auxiliary Longitudinal Magnetic Field on Overlapping Deposition of Wire Arc Additive Manufacturing. Int. J. Adv. Manuf. Technol. 2023, 125, 1383–1401. [Google Scholar]
- Zhou, X.; Tian, Q.; Du, Y.; Zhang, H.; Wang, G.; Mei, F. Study of the Influence of Longitudinal Static Magnetic Field on Surface Quality and Performances of Arc Welding Based Additive Forming Parts. J. Mech. Eng. 2018, 54, 84–92. [Google Scholar] [CrossRef]
- Wang, Q.; Zhu, S.; Xu, S.; Wang, X.; Li, W. Effect of Longitudinal Magnetic Field on Forming Accuracy for Arc Additive Manufacturing Aluminum Alloy. Ordnance Mater. Sci. Eng. 2019, 42, 11–14. [Google Scholar] [CrossRef]
- Chang, Y.; Liu, T. Effect of Magnetic Field on Arc Augmentation Forming and Microstructural Performance of Aluminium Alloy. J. Shenyang Univ. Technol. 2021, 43, 277–283. [Google Scholar]
- Zhao, W.; Wei, Y.; Zhang, X.; Chen, J.; Ou, W. Comparative Investigation of Wire Arc Additive Manufacturing of Al-5%Mg Alloy with and without External Alternating Magnetic Field. Int. J. Adv. Manuf. Technol. 2022, 119, 2571–2587. [Google Scholar] [CrossRef]
- Zhou, X.; Tian, Q.; Du, Y.; Bai, X.; Zhang, H. Simulation of Heat and Mass Transfer in Arc Welding Based Additive Forming Process with External Transverse Magnetic Field. J. Mech. Eng. 2018, 54, 193–206. [Google Scholar] [CrossRef]
- Antonello, M.G.; Bracarense, A.Q.; Scheuer, C.J.; De Freitas Daudt, N. Effect of Electromagnetic Arc Constriction Applied in GTAW-Based Wire Arc Additive Manufacturing on Walls’ Geometry and Microstructure. J. Manuf. Process. 2021, 71, 156–167. [Google Scholar] [CrossRef]
- Fan, C.; Yao, Q.; Yang, C.; Lin, S.; Kou, Y. Characteristics of Droplet Transfer During Ultrasound-MIG Hybrid Welding of Aluminum Alloy. Trans. China Weld. Inst. 2016, 37, 35–39. [Google Scholar]
- Chen, C.; Fan, C.; Lin, S.; Yang, C. Effect of Ultrasonic Mode on GMAW Short Circuiting Transfer and Weld Appearance. Trans. China Weld. Inst. 2020, 42, 7–10. [Google Scholar]
- Wang, Y.; Yu, C.; Lu, H.; Chen, J. Research Status and Future Perspectives on Ultrasonic Arc Welding Technique. J. Manuf. Process. 2020, 58, 936–954. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, Y.; Ming, W.; He, W.; Ma, J. Review: The Metal Additive-Manufacturing Technology of the Ultrasonic-Assisted Wire-and-Arc Additive-Manufacturing Process. Metals 2023, 13, 398. [Google Scholar] [CrossRef]
- Wang, H.; Hu, Y.; Ning, F.; Cong, W. Ultrasonic Vibration-Assisted Laser Engineered Net Shaping of Inconel 718 Parts: Effects of Ultrasonic Frequency on Microstructural and Mechanical Properties. J. Mater. Process. Technol. 2020, 276, 116395. [Google Scholar] [CrossRef]
- Colegrove, P.A.; Donoghue, J.; Martina, F.; Gu, J.; Prangnell, P.; Hönnige, J. Application of Bulk Deformation Methods for Microstructural and Material Property Improvement and Residual Stress and Distortion Control in Additively Manufactured Components. Scr. Mater. 2017, 135, 111–118. [Google Scholar] [CrossRef]
- Colegrove, P.A.; Coules, H.E.; Fairman, J.; Martina, F.; Kashoob, T.; Mamash, H.; Cozzolino, L.D. Microstructure and Residual Stress Improvement in Wire and Arc Additively Manufactured Parts through High-Pressure Rolling. J. Mater. Process. Technol. 2013, 213, 1782–1791. [Google Scholar] [CrossRef]
- Martina, F.; Roy, M.J.; Szost, B.A.; Terzi, S.; Colegrove, P.A.; Williams, S.W.; Withers, P.J.; Meyer, J.; Hofmann, M. Residual Stress of As-Deposited and Rolled Wire+arc Additive Manufacturing Ti–6Al–4V Components. Mater. Sci. Technol. 2016, 32, 1439–1448. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, H.; Zhou, F. Improvement in Geometrical Accuracy and Mechanical Property for Arc-Based Additive Manufacturing Using Metamorphic Rolling Mechanism. J. Manuf. Sci. Eng. 2016, 138, 4032079. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, X.; Wang, G.; Zhang, Y. Hybrid Direct Manufacturing Method of Metallic Parts Using Deposition and Micro Continuous Rolling. Rapid Prototyp. J. 2013, 19, 387–394. [Google Scholar] [CrossRef]
- Honnige, J.R.; Williams, S.; Roy, M.J.; Colegrove, P.; Ganguly, S. Residual Stress Characterization and Control in the Additive Manufacture of Large Scale Metal Structures. In Proceedings of the Residual Stresses 2016—International Conference on Residual Stresses (ICRS-10), Sydney, Australia, 3–7 July 2016; Volume 2, pp. 455–460. [Google Scholar] [CrossRef]
- Singh, S.R.; Khanna, P. Wire Arc Additive Manufacturing (WAAM): A New Process to Shape Engineering Materials. Mater. Today: Proc. 2021, 44, 118–128. [Google Scholar] [CrossRef]
- Hönnige, J.R.; Colegrove, P.; Williams, S. Improvement of Microstructure and Mechanical Properties in Wire + Arc Additively Manufactured Ti-6Al-4V with Machine Hammer Peening. Procedia Eng. 2017, 216, 8–17. [Google Scholar] [CrossRef]
- Yang, N.; Dong, H.; Zhu, Z.; Wang, C.; Zhao, L.; Guo, X. Finite Element Simulation of Residual Stress of Wire Arc Additive Manufactured Low Alloy High Strength Steel Component Assisted by Interlayer Hammering. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2023, 237, 2201–2211. [Google Scholar] [CrossRef]
- Liang, H.; Li, P.; Shen, X.; Chen, L.; Dai, J.; Li, D.; Yang, D. Finite Elemet Analysis of the Effect of Ultrasonic Impact on the Stress of Aluminum Alloy Arc Additive Manufacturing. Trans. China Weld. Inst. 2023, 44, 79–85. [Google Scholar]
- Cortina, M.; Arrizubieta, J.I.; Ruiz, J.E.; Ukar, E.; Lamikiz, A. Latest Developments in Industrial Hybrid Machine Tools That Combine Additive and Subtractive Operations. Materials 2018, 11, 2583. [Google Scholar] [CrossRef]
- Sun, R.; Zhu, Y.; Li, L.; Guo, W.; Peng, P. Effect of Laser Shock Peening on Microstructure and Residual Stress of Wire-Arc Additive Manufactured 2319 Aluminum Alloy. Laser Optoelectron. Prog. 2018, 55, 135–141. [Google Scholar]
- Qutaba, S.; Asmelash, M.; Saptaji, K.; Azhari, A. A Review on Peening Processes and Its Effect on Surfaces. the Int. J. Adv. Manuf. Technol. 2022, 120, 4233–4270. [Google Scholar] [CrossRef]
- Wang, Q.; Zhu, S.; Chen, C.; Wang, X.; Li, W. Research Progress of Additive Remanufacturing Technology Based on Energy Beam and Energy Field. China Surf. Eng. 2018, 31, 1–8. [Google Scholar]
- Zhang, Z.; Sun, C.; Xu, X.; Liu, L. Surface Quality and Forming Characteristics of Thin-Wall Aluminium Alloy Parts Manufactured by Laser Assisted MIG Arc Additive Manufacturing. Int. J. Lightweight Mater. Manuf. 2018, 1, 89–95. [Google Scholar] [CrossRef]
- Zhang, Z.; Zeng, Q.; Liu, L.; Sun, C. Forming Regularity of Aluminum Alloy Formed by Laser Induced MIG Arc Additive Manufacturing. Trans. China Weld. Inst. 2019, 40, 7–12. [Google Scholar]
- Osman, H.; Azab, A.; Baki, M.F. Optimal Process Planning for Hybrid Additive and Subtractive Manufacturing. J. Manuf. Sci. Eng. 2023, 145, 4056824. [Google Scholar] [CrossRef]
- Merklein, M.; Junker, D.; Schaub, A.; Neubauer, F. Hybrid Additive Manufacturing Technologies—An Analysis Regarding Potentials and Applications. Phys. Procedia 2016, 83, 549–559. [Google Scholar] [CrossRef]
- Li, B.; Nagaraja, K.M.; Zhang, R.; Malik, A.; Lu, H.; Li, W. Integrating Robotic Wire Arc Additive Manufacturing and Machining: Hybrid WAAM Machining. Int. J. Adv. Manuf. Technol. 2023, 129, 3247–3259. [Google Scholar] [CrossRef]
- Zhang, H.; Xiong, X.; Wang, G.; Chen, J. Direct Manufacturing Technology of Metal Parts by Hybrid Plasma Deposition Shaping and Milling Finishing. China Mech. Eng. 2005, 20, 1863–1866. [Google Scholar] [CrossRef]
- Li, L.; Haghighi, A.; Yang, Y. A Novel 6-Axis Hybrid Additive-Subtractive Manufacturing Process: Design and Case Studies. J. Manuf. Process. 2018, 33, 150–160. [Google Scholar] [CrossRef]
- Ren, L.; Eiamsa-Ard, K.; Ruan, J.; Liou, F. Part Repairing Using a Hybrid Manufacturing System. In Proceedings of the ASME 2007 International Manufacturing Science and Engineering Conference, Atlanta, GA, USA, 15–18 October 2007. [Google Scholar]
- Chang, Y.C.; Pinilla, J.M.; Kao, J.-H.; Dong, J.; Ramaswami, K.; Prinz, F.B. Automated Layer Decomposition for Additive/Subtractive Solid Freeform Fabrication. 1999. Available online: https://www.semanticscholar.org/paper/Automated-Layer-Decomposition-for-Additive-Solid-Chang-Pinilla/024b55061fc308eb0413be3713a0ded14740a836 (accessed on 14 November 2024).
- Guo, C.; Wang, Z.; Yan, J.; Yuan, D.; Jiang, C.; Wang, J.; Niu, Z. Research progress in additive–subtractive hybrid manufacturing. Chin. J. Eng. 2020, 42, 540–546. [Google Scholar] [CrossRef]
- Chen, N.; Barnawal, P.; Frank, M.C. Automated Post Machining Process Planning for a New Hybrid Manufacturing Method of Additive Manufacturing and Rapid Machining. Rapid Prototyp. J. 2018, 24, 1077–1090. [Google Scholar] [CrossRef]
- Karunakaran, K.P.; Suryakumar, S.; Pushpa, V.; Akula, S. Low Cost Integration of Additive and Subtractive Processes for Hybrid Layered Manufacturing. Robot. Comput. -Integr. Manuf. 2010, 26, 490–499. [Google Scholar] [CrossRef]
- Song, Y.-A.; Park, S.; Choi, D.; Jee, H. 3D Welding and Milling: Part I–a Direct Approach for Freeform Fabrication of Metallic Prototypes. Int. J. Mach. Tools Manuf. 2005, 45, 1057–1062. [Google Scholar] [CrossRef]
- Akula, S.; Karunakaran, K.P. Hybrid Adaptive Layer Manufacturing: An Intelligent Art of Direct Metal Rapid Tooling Process. Robot. Comput. -Integr. Manuf. 2006, 22, 113–123. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, Y.; Gao, M.; Wang, F.; Li, Q.; Zeng, X. Effects of Milling Thickness on Wire Deposition Accuracy of Hybrid Additive/Subtractive Manufacturing. Sci. Technol. Weld. Join. 2019, 24, 375–381. [Google Scholar] [CrossRef]
- Han, G.; Yang, J.; Ye, Z.; Xu, L.; Zhang, H.; Yang, H. Research on Longitudinal-Torsion Compound Ultrasonic Vibration Milling Characteristics for AlMgSc Alloys Formed by Arc Micro-casting and Forging Additive Manufacturing. China Mech. Eng. 2022, 33, 2971–2979. [Google Scholar]
- Zhang, S.; Gong, M.; Zeng, X.; Gao, M. Residual Stress and Tensile Anisotropy of Hybrid Wire Arc Additive-Milling Subtractive Manufacturing. J. Mater. Process. Technol. 2021, 293, 117077. [Google Scholar] [CrossRef]
- Song, Y.-A.; Park, S. Experimental Investigations into Rapid Prototyping of Composites by Novel Hybrid Deposition Process. J. Mater. Process. Technol. 2006, 171, 35–40. [Google Scholar] [CrossRef]
- Li, F.; Chen, S.; Shi, J.; Tian, H.; Zhao, Y. Evaluation and Optimization of a Hybrid Manufacturing Process Combining Wire Arc Additive Manufacturing with Milling for the Fabrication of Stiffened Panels. Appl. Sci. 2017, 7, 1233. [Google Scholar] [CrossRef]
Problems | Mitigations |
---|---|
Problem 1 |
|
Problem 2 |
|
Problem 3 |
|
Schematic Diagram of the Additive Weld Bead Overlapping Models | Characteristics of the Models |
---|---|
Flat-top overlapping model (FOM), utilizing a straight line to connect the vertices of the adjacent weld beads. The optimal center distance is 0.6366 w [157]. | |
The improved FOM model, utilizing the parabolic function f2(x) to fit the overlapping area. The optimal center distance is 0.715 w [158]. | |
Tangent overlapping model (TOM), with the definition of the critical valley (the area surrounded by points B, C, and E) introduced. (In the figure, point A is the leftmost endpoint of bead 2. And point D is the rightmost endpoint of bead 1. A line parallel to the Y-axis passing through point A intersects bead 1 at point B. Line BC is tangent to bead 2, and point E is the intersection point of the contours of bead 1 and bead 2.) The optimal center distance is 0.738 w [159]. | |
Improved overlapping model, taking into account in advance the offset distance of weld bead caused by the actual physical process (surface tension), performing deposition of non-isometric movement of the welding torch [160]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Zhao, B.; Liu, Y.; Zhao, J.; Ma, G. Research Progress in Shape-Control Methods for Wire-Arc-Directed Energy Deposition. Materials 2024, 17, 5704. https://doi.org/10.3390/ma17235704
Wang J, Zhao B, Liu Y, Zhao J, Ma G. Research Progress in Shape-Control Methods for Wire-Arc-Directed Energy Deposition. Materials. 2024; 17(23):5704. https://doi.org/10.3390/ma17235704
Chicago/Turabian StyleWang, Jie, Bo Zhao, Yuanlin Liu, Junjie Zhao, and Guangyu Ma. 2024. "Research Progress in Shape-Control Methods for Wire-Arc-Directed Energy Deposition" Materials 17, no. 23: 5704. https://doi.org/10.3390/ma17235704
APA StyleWang, J., Zhao, B., Liu, Y., Zhao, J., & Ma, G. (2024). Research Progress in Shape-Control Methods for Wire-Arc-Directed Energy Deposition. Materials, 17(23), 5704. https://doi.org/10.3390/ma17235704