Synthesis and Structural Modulation of Nanoporous Copper Films by Magnetron Sputtering and One-Step Dealloying
Abstract
:1. Introduction
2. Experimental
2.1. Material Preparation
2.2. Characterization
3. Results and Discussion
3.1. Effect of Sputtering Parameters on Al-Cu Precursor Thin Films
3.2. Effect of Film Composition on the Microstructures of np-Cu
3.3. Effect of Substrate Temperature on the Microstructure of np-Cu
3.4. Bi-Layer np-Cu with a Hierarchical Structure
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Luc, W.; Jiao, F. Nanoporous Metals as Electrocatalysts: State-of-the-Art, Opportunities, and Challenges. ACS Catal. 2017, 7, 5856–5861. [Google Scholar] [CrossRef]
- Tan, Y.; Wang, H.; Liu, P.; Cheng, C.; Zhu, F.; Hirata, A.; Chen, M. 3D Nanoporous Metal Phosphides toward High-Efficiency Electrochemical Hydrogen Production. Adv. Mater. 2016, 28, 2951–2955. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Chen, L.; Cui, L.; Yan, J.; Zhang, S.; Shi, S. Freestanding 3D nanoporous Cu@1D Cu2O nanowire heterostructures: From a facile one-step protocol to robust application in Li storage. J. Mater. Chem. A 2019, 7, 15089–15100. [Google Scholar] [CrossRef]
- Wu, X.; He, G.; Ding, Y. Dealloyed Nanoporous Materials for Rechargeable Post-Lithium Batteries. ChemSusChem 2020, 13, 3376–3390. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.Y.; Hou, Y.; Kang, J.L.; Hirata, A.; Chen, M.W. Asymmetric metal oxide pseudocapacitors advanced by three-dimensional nanoporous metal electrodes. J. Mater. Chem. A 2014, 2, 8448–8455. [Google Scholar] [CrossRef]
- Lang, X.; Hirata, A.; Fujita, T.; Chen, M. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat. Nanotechnol. 2011, 6, 232–236. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, H.; Niu, J.; Ma, W.; Shi, Y.; Song, M.; Peng, Z.; Zhang, Z. Scalable Fabrication of Core–Shell Sb@Co(OH)2 Nanosheet Anodes for Advanced Sodium-Ion Batteries via Magnetron Sputtering. ACS Nano 2018, 12, 11678–11688. [Google Scholar] [CrossRef]
- Gu, X.; Xu, L.; Tian, F.; Ding, Y. Au-Ag alloy nanoporous nanotubes. Nano Res. 2010, 2, 386–393. [Google Scholar] [CrossRef]
- Şeker, E.; Shih, W.-C.; Stine, K.J. Nanoporous metals by alloy corrosion: Bioanalytical and biomedical applications. MRS Bull. 2018, 43, 49–56. [Google Scholar] [CrossRef]
- Juarez, T.; Biener, J.; Weissmüller, J.; Hodge, A.M. Nanoporous Metals with Structural Hierarchy: A Review. Adv. Eng. Mater. 2017, 19, 1700389. [Google Scholar] [CrossRef]
- Gan, Y.X.; Zhang, Y.; Gan, J.B. Nanoporous metals processed by dealloying and their applications. AIMS Mater. Sci. 2018, 5, 1141–1183. [Google Scholar] [CrossRef]
- Erlebacher, J.; Aziz, M.J.; Karma, A.; Dimitrov, N.; Sieradzki, K. Evolution of nanoporosity in dealloying. Nature 2001, 410, 450–453. [Google Scholar] [CrossRef] [PubMed]
- McCue, I.; Benn, E.; Gaskey, B.; Erlebacher, J. Dealloying and Dealloyed Materials. Annu. Rev. Mater. Res. 2016, 46, 263–286. [Google Scholar] [CrossRef]
- Su, X.; Sun, Y.; Jin, L.; Zhang, L.; Yang, Y.; Kerns, P.; Liu, B.; Li, S.; He, J. Hierarchically porous Cu/Zn bimetallic catalysts for highly selective CO2 electroreduction to liquid C2 products. Appl. Catal. B 2020, 269, 118800. [Google Scholar] [CrossRef]
- Tan, F.; Yu, B.; Yan, X.; Zhang, Y.; Bai, Q.; Zhang, J.; Zhang, Z. Electrochemical actuation behaviors of bulk nanoporous copper with a hierarchical structure. J. Alloys Compd. 2022, 923, 166469. [Google Scholar] [CrossRef]
- Bai, Q.; Wang, Y.; Tan, F.; Zhang, Z. Eutectic-derived synthesis of hierarchically nanoporous copper for electrochemical actuation and solar steam generation. Nano Res. 2023, 17, 2011–2018. [Google Scholar] [CrossRef]
- Hyun, G.; Song, J.T.; Ahn, C.; Ham, Y.; Cho, D.; Oh, J.; Jeon, S. Hierarchically porous Au nanostructures with interconnected channels for efficient mass transport in electrocatalytic CO2 reduction. Proc. Natl. Acad. Sci. USA 2020, 117, 5680–5685. [Google Scholar] [CrossRef]
- Qi, Z.; Weissmüller, J. Hierarchical Nested-Network Nanostructure by Dealloying. ACS Nano 2013, 7, 5948–5954. [Google Scholar] [CrossRef]
- Lee, Y.-Z.; Zeng, W.-Y.; Cheng, I.C. Synthesis and characterization of nanoporous copper thin films by magnetron sputtering and subsequent dealloying. Thin Solid Films 2020, 699, 137913. [Google Scholar] [CrossRef]
- Boonsa, P.; Kamsawat, J.; Rattanasakulthong, W.; Rodchanarowan, A. Effect of Dealloying Conditions on Nanoporous Surface of Cu-Zn Alloy. Key Eng. Mater. 2017, 728, 181–186. [Google Scholar] [CrossRef]
- Ma, H.; Zhao, B.; Ding, K.; Zhang, Y.; Wu, G.; Gao, Y. Influence of dealloying solution on the microstructure of nanoporous copper through chemical dealloying of Al75Cu25 ribbons. J. Mater. Res. 2020, 35, 2610–2619. [Google Scholar] [CrossRef]
- Seker, E.; Begley, M.; Bart-Smith, H.; Zangari, G.; Kelly, R.G.; Reed, M.L. Investigating Porosity and Stress Evolution in Nanoporous Gold Films by Timed Thermal Treatment. ECS Trans. 2007, 6, 91–97. [Google Scholar] [CrossRef]
- Wang, X.; Qi, Z.; Zhao, C.; Wang, W.; Zhang, Z. Influence of Alloy Composition and Dealloying Solution on the Formation and Microstructure of Monolithic Nanoporous Silver through Chemical Dealloying of Al–Ag Alloys. J. Phys. Chem. C 2009, 113, 13139–13150. [Google Scholar] [CrossRef]
- Chauvin, A.; Txia Cha Heu, W.; Tessier, P.Y.; El Mel, A.A. Impact of the morphology and composition on the dealloying process of co-sputtered silver–aluminum alloy thin films. Phys. Status Solidi 2016, 253, 2167–2174. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Si, C.; Bai, Q.; Ma, W.; Gao, H.; Zhang, Z. Electrochemical actuation behaviors of bulk nanoporous palladium in acid and alkaline solutions. Electrochim. Acta 2016, 220, 91–97. [Google Scholar] [CrossRef]
- Hakamada, M.; Mabuchi, M. Fabrication of nanoporous palladium by dealloying and its thermal coarsening. J. Alloys Compd. 2009, 479, 326–329. [Google Scholar] [CrossRef]
- Zhang, C.; Xie, Z.; He, X.; Liang, P.; Zeng, Q.; Zhang, Z. Fabrication and characterization of nanoporous Cu–Sn intermetallicsviadealloying of ternary Mg–Cu–Sn alloys. CrystEngComm 2018, 20, 6900–6908. [Google Scholar] [CrossRef]
- Liu, Q.Q.; Zhang, D.W.; Shen, J.; Li, Z.Q.; Shi, J.H.; Chen, Y.W.; Sun, Z.; Yang, Z.; Huang, S.M. Effects of RF and pulsed DC sputtered TiO2 compact layer on the performance dye-sensitized solar cells. Surf. Coat. Technol. 2013, 231, 126–130. [Google Scholar] [CrossRef]
- Donelan, P. Modelling microstructural and mechanical properties of ferritic ductile cast iron. Mater. Sci. Technol. 2013, 16, 261–269. [Google Scholar] [CrossRef]
- Lloyd, D.J.; Court, S.A. Influence of grain size on tensile properties of Al-Mg alloys. Mater. Sci. Technol. 2013, 19, 1349–1354. [Google Scholar] [CrossRef]
- Osório, W.R.; Cheung, N.; Spinelli, J.E.; Goulart, P.R.; Garcia, A. The effects of a eutectic modifier on microstructure and surface corrosion behavior of Al-Si hypoeutectic alloys. J. Solid State Electrochem. 2007, 11, 1421–1427. [Google Scholar] [CrossRef]
- Petch, N.J. The cleavage strength of polycrystals. J. Iron Steel Inst. 1953, 174, 25–28. [Google Scholar]
- Sønderby, S.; Aijaz, A.; Helmersson, U.; Sarakinos, K.; Eklund, P. Deposition of yttria-stabilized zirconia thin films by high power impulse magnetron sputtering and pulsed magnetron sputtering. Surf. Coat. Technol. 2014, 240, 1–6. [Google Scholar] [CrossRef]
- He, Z.; Zhang, S.; Sun, D. Effect of bias on structure mechanical properties and corrosion resistance of TiNx films prepared by ion source assisted magnetron sputtering. Thin Solid Film. 2019, 676, 60–67. [Google Scholar] [CrossRef]
- Gao, H.; Yan, X.; Niu, J.; Zhang, Y.; Song, M.; Shi, Y.; Ma, W.; Qin, J.; Zhang, Z. Scalable structural refining via altering working pressure and in-situ electrochemically-driven Cu-Sb alloying of magnetron sputtered Sb anode in sodium ion batteries. Chem. Eng. J. 2020, 388, 124299. [Google Scholar] [CrossRef]
- Thornton, J.A. High rate thick film growth. Annu. Rev. Mater. Sci. 1977, 7, 239–260. [Google Scholar] [CrossRef]
- Thornton, J.A. Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings. J. Vac. Sci. Technol. 1974, 11, 666–670. [Google Scholar] [CrossRef]
- Jun, Y.S.; Kim, S.S. Grain Structure and Electrical Properties of Transparent Indium Oxide Thin Films Prepared by RF Magnetron Sputtering. Defect Diffus. Forum 2020, 400, 170–175. [Google Scholar] [CrossRef]
- Parida, S.; Kramer, D.; Volkert, C.A.; Rösner, H.; Erlebacher, J.; Weissmüller, J. Volume Change during the Formation of Nanoporous Gold by Dealloying. Phys. Rev. Lett. 2006, 97, 035504. [Google Scholar] [CrossRef] [PubMed]
- Hemmendinger, K.D.; Hodge, A.M. Progression of the dealloying front in bilayer Cu–Al and Cu–Zn nanoporous foams. J. Mater. Res. 2023, 38, 3407–3415. [Google Scholar] [CrossRef]
- Hu, Z.Y.; Wang, P.P.; Fu, E.G.; Wang, X.J.; Yan, X.Q.; Xu, P.; Wu, Z.M.; Zhao, Y.B.; Liang, Y.X. Bilayer nanoporous copper films with various morphology features synthesized by one-step dealloying. J. Alloys Compd. 2018, 754, 26–31. [Google Scholar] [CrossRef]
- Garcés, G.; Landais, S.; Adeva, P. Effect of the substrate temperature on the microstructure and texture of Mg90Zr10 (at.%) films deposited by sputtering. J. Alloys Compd. 2006, 425, 148–152. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Y.; Yan, M. A review on the preparation of thin-film YSZ electrolyte of SOFCs by magnetron sputtering technology. Sep. Purif. Technol. 2022, 298, 121627. [Google Scholar] [CrossRef]
- Ying, J.; Lenaerts, S.; Symes, M.D.; Yang, X.Y. Hierarchical Design in Nanoporous Metals. Adv. Sci. 2022, 9, 2106117. [Google Scholar] [CrossRef]
- El Mel, A.-A.; Boukli-Hacene, F.; Molina-Luna, L.; Bouts, N.; Chauvin, A.; Thiry, D.; Gautron, E.; Gautier, N.; Tessier, P.-Y. Unusual Dealloying Effect in Gold/Copper Alloy Thin Films: The Role of Defects and Column Boundaries in the Formation of Nanoporous Gold. ACS Appl. Mater. Interfaces 2015, 7, 2310–2321. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Yu, B.; Ran, Y.; Liu, Y.; Fei, X.; Sun, J.; Tan, F.; Cheng, G.; Zhang, Y.; Qin, J.; et al. Synthesis and Structural Modulation of Nanoporous Copper Films by Magnetron Sputtering and One-Step Dealloying. Materials 2024, 17, 5705. https://doi.org/10.3390/ma17235705
Li J, Yu B, Ran Y, Liu Y, Fei X, Sun J, Tan F, Cheng G, Zhang Y, Qin J, et al. Synthesis and Structural Modulation of Nanoporous Copper Films by Magnetron Sputtering and One-Step Dealloying. Materials. 2024; 17(23):5705. https://doi.org/10.3390/ma17235705
Chicago/Turabian StyleLi, Jinglei, Bin Yu, Yunfei Ran, Yalong Liu, Xiangyu Fei, Jiameng Sun, Fuquan Tan, Guanhua Cheng, Ying Zhang, Jingyu Qin, and et al. 2024. "Synthesis and Structural Modulation of Nanoporous Copper Films by Magnetron Sputtering and One-Step Dealloying" Materials 17, no. 23: 5705. https://doi.org/10.3390/ma17235705
APA StyleLi, J., Yu, B., Ran, Y., Liu, Y., Fei, X., Sun, J., Tan, F., Cheng, G., Zhang, Y., Qin, J., & Zhang, Z. (2024). Synthesis and Structural Modulation of Nanoporous Copper Films by Magnetron Sputtering and One-Step Dealloying. Materials, 17(23), 5705. https://doi.org/10.3390/ma17235705