Novel and Sustainable Materials for the Separation of Lithium, Rubidium, and Cesium Ions from Aqueous Solutions in Adsorption Processes—A Review
Abstract
:1. Introduction
2. Adsorption Methods
3. Ion Sieves
3.1. Lithium Ions Separation
3.2. Cesium Ions Separation
4. Aluminum-Based Adsorbents
4.1. Lithium Ions Separation
4.2. Cesium Ions Separation
5. Mineral-Based Adsorbents
6. Complex and Composite Adsorbents
7. Ion Exchange Resins
8. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, S.; He, Z.; Li, C.; Pan, W.; Li, W.; Liu, W.; Li, T.; Chen, Y.; Chen, L. Preparation and Application of Thin-Sodium Metal. Small Sci. 2024, 4, 2300362. [Google Scholar] [CrossRef]
- Wei, X.; Liu, B.; Chen, Z.; Wu, K.; Liu, Y.; Yuan, X.; Zhang, X.; Liu, X.; Wan, Q.; Song, Y. Recent advances in modulation engineering-enabled metal compounds for potassium-ion storage. Energy Storage Mater. 2022, 51, 815–839. [Google Scholar] [CrossRef]
- Wang, Q.; Shan, C.; Zhang, P.; Zhao, W.; Zhu, G.; Sun, Y.; Wang, Q.; Jiang, Y.; Shakoor, N.; Rui, Y. The combination of nanotechnology and potassium: Applications in agriculture. Environ. Sci. Pollut. Res. 2024, 31, 1890–1906. [Google Scholar] [CrossRef]
- Tahir, M.A.; Sabah, N.U.; Gul, S.; Javed, M.S.; Aziz, A.; Javed, M.A.; Aslam, M.U.; Daud, M.; Ayesha. Optimization of new generation potassium (NG-K) fertilizer for improvement in quantity and quality of citrus (Citrus limon). SABRAO J. Breed. Genet. 2023, 55, 575–586. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Y.; Yang, J.; Nuli, Y.; Wang, J. Post lithium-sulfur battery era: Challenges and opportunities towards practical application. Sci. China Chem. 2024, 67, 106–121. [Google Scholar] [CrossRef]
- Bibienne, T.; Magnan, J.-F.; Rupp, A.; Laroche, N. From Mine to Mind and Mobiles: Society’s Increasing Dependence on Lithium. Elements 2020, 16, 265–270. [Google Scholar] [CrossRef]
- Liu, H.; Sun, Q.; Zhang, H.; Cheng, J.; Li, Y.; Zeng, Z.; Zhang, S.; Xu, X.; Ji, F.; Li, D.; et al. The application road of silicon-based anode in lithium-ion batteries: From liquid electrolyte to solid-state electrolyte. Energy Storage Mater. 2023, 55, 244–263. [Google Scholar] [CrossRef]
- Li, H.; Li, C.; Zhao, H.; Tao, B.; Wang, G. Two-Dimensional Black Phosphorus: Preparation, Passivation and Lithium-Ion Battery Applications. Molecules 2022, 27, 5845. [Google Scholar] [CrossRef]
- Kumar, S.; Katiyar, J.K.; Kesharwani, G.S.; Roy, B.S. Microstructure, mechanical, and force-torque generation properties of friction stir welded third generation Al/Li alloy at higher traverse speed. Mater. Today Commun. 2023, 35, 106084. [Google Scholar] [CrossRef]
- Lv, Y.; Liu, Y.; Ma, B.; Wang, C.; Chen, Y. Preferential extraction of rubidium from high concentration impurity solution by solvent extraction and preparation of high-purity rubidium salts. Desalination 2023, 545, 116162. [Google Scholar] [CrossRef]
- Moradgholi, F.; Lari, J.; Parsa, M.V.; Mirkharrazi, M. Nano-Rb2HPW12O40 as an Efficient and Novel Catalyst for One-Pot Synthesis of β-Amino Ketones. Acta Chim. Slov. 2016, 63, 781–789. [Google Scholar] [CrossRef] [PubMed]
- Nikiforidis, G.; El Yagoubi, M.; Anouti, M. Polarizable cesium cations for energy storage from electrolyte characterization to-EDLC application. Electrochim. Acta 2022, 402, 139529. [Google Scholar] [CrossRef]
- Singh, K.K.; Tewari, G.; Kumar, S.; Busa, R.; Chaturvedi, A.; Rathore, S.S.; Singh, R.K.; Gangwar, A. Understanding urban groundwater pollution in the Upper Gangetic Alluvial Plains of northern India with multiple industries and their impact on drinking water quality and associated health risks. Groundw. Sustain. Dev. 2023, 21, 100902. [Google Scholar] [CrossRef]
- Liu, Y.; Su, M.; Han, Z. Effects of NaCl Stress on the Growth, Physiological Characteristics and Anatomical Structures of Populus talassica × Populus euphratica Seedlings. Plants 2022, 11, 3025. [Google Scholar] [CrossRef]
- Fatehizadeh, A.; Taheri, E.; Amin, M.M.; Mahdavi, M.; Moradi, N. Sodium and potassium removal from brackish water by nanofiltration membrane: Single and binary salt mixtures. Desalination Water Treat. 2018, 103, 65–71. [Google Scholar] [CrossRef]
- Wan, J.; Wang, H.-T.; Li, X.; Zhang, C.X.; Wu, X.-S.; Sun, B. Removal of several types of sodium and potassium salts from aqueous solutions based on their natural fixation. Desalination Water Treat. 2019, 169, 133–151. [Google Scholar] [CrossRef]
- Figueira, M.; Rodríguez-Jiménez, D.; López, J.; Reig, M.; Cortina, J.L.; Valderrama, C. Evaluation of the nanofiltration of brines from seawater desalination plants as pre-treatment in a multimineral brine extraction process. Sep. Purif. Technol. 2023, 322, 124232. [Google Scholar] [CrossRef]
- Truong, V.-H.; Chong, T.H. Development of a diafiltration-nanofiltration-reverse osmosis (DiaNF-RO) process for ion fractionation towards resource recovery in seawater desalination. Desalination 2024, 583, 117684. [Google Scholar] [CrossRef]
- Bello, A.S.; Zouari, N.; Da’ana, D.A.; Hahladakis, J.N.; Al-Ghouti, M.A. An overview of brine management: Emerging desalination technologies, life cycle assessment, and metal recovery methodologies. J. Environ. Manag. 2021, 288, 112358. [Google Scholar] [CrossRef]
- Gao, J.; Qiu, Y.; Li, M.; Le, H. Separation of valuable metals in spent LiNi0.46Co0.2Mn0.34O2 battery by shear induced dissociation coupling with ultrafiltration. Hydrometallurgy 2019, 189, 105127. [Google Scholar] [CrossRef]
- Xing, P.; Wang, C.; Chen, Y.; Ma, B. Rubidium extraction from mineral and brine resources: A review. Hydrometallurgy 2021, 203, 105644. [Google Scholar] [CrossRef]
- Özmal, F.; Erdogan, Y.; Kale, M. Determination of Optimum Extraction Conditions for Lithium, Rubidium, and Cesium from Boron Industrial Waste and Analysis by FAAS. At. Spectrosc. 2018, 39, 164–169. [Google Scholar] [CrossRef]
- Lee, C.H.; Chen, W.S.; Chen, W.C. Circulation of boron resources from desalination brine through solvent extraction (TMPD/2-ethylhexanol with kerosene) and ionic-liquid extraction (ALiCy/kerosene) methods. Korean J. Chem. Eng. 2023, 40, 2480–2488. [Google Scholar] [CrossRef]
- Swain, B. Recovery and recycling of lithium: A review. Sep. Purif. Technol. 2017, 172, 388–403. [Google Scholar] [CrossRef]
- Dutta, D.; Rautela, R.; Gujjala, L.K.S.; Kundu, D.; Sharma, P.; Tembhare, M.; Kumar, S. A review on recovery processes of metals from E-waste: A green perspective. Sci. Total Environ. 2023, 859, 160391. [Google Scholar] [CrossRef]
- Krishnan, S.; Zulkapli, N.S.; Kamyab, H.; Taib, S.M.; Din, M.F.B.M.; Majid, Z.A.; Chaiprapat, S.; Kenzo, I.; Ichikawa, Y.; Nasrullah, M.; et al. Current technologies for recovery of metals from industrial wastes: An overview. Environ. Technol. Innov. 2021, 22, 101525. [Google Scholar] [CrossRef]
- Kumari, R.; Samadder, S.R. A critical review of the pre-processing and metals recovery methods from e-wastes. J. Environ. Manag. 2022, 320, 115887. [Google Scholar] [CrossRef]
- Zheng, S.; Yang, S.; Chen, J.; Wu, D.; Qi, B.; Zhang, C.; Deng, W.; Li, J.; Mei, T.; Wang, S.; et al. New Progresses in Efficient, Selective, and Environmentally Friendly Recovery of Valuable Metal from e-Waste and Industrial Catalysts. Adv. Sustain. Syst. 2024, 8, 2300512. [Google Scholar] [CrossRef]
- Cheng, Q.; Wang, Z.; Wang, Y.; Li, J.-T.; Fu, H. Recent advances in preferentially selective Li recovery from spent lithium-ion batteries: A review. J. Environ. Chem. Eng. 2024, 12, 112903. [Google Scholar] [CrossRef]
- Dev, V.V.; Nair, K.K.; Baburaj, G.; Krishnan, K.A. Pushing the boundaries of heavy metal adsorption: A commentary on strategies to improve adsorption efficiency and modulate process mechanisms. Colloid Interface Sci. Commun. 2022, 49, 100626. [Google Scholar] [CrossRef]
- Alaqarbeh, M. Adsorption Phenomena: Definition, Mechanisms, and Adsorption Types: Short Review. RHAZES Green Appl. Chem. 2021, 13, 43–51. [Google Scholar]
- Ighalo, J.O.; Amaku, J.F.; Olisah, C.; Adeola, A.O.; Iwuozor, K.O.; Akpomie, K.G.; Conradie, J.; Adegoke, K.A.; Oyedotun, K.O. Utilisation of adsorption as a resource recovery technique for lithium in geothermal water. J. Mol. Liq. 2022, 365, 120107. [Google Scholar] [CrossRef]
- Qasem, N.A.A.; Mohammed, R.H.; Lawal, D.U. Removal of heavy metal ions from wastewater: A comprehensive and critical review. npj Clean Water 2021, 4, 36. [Google Scholar] [CrossRef]
- Cai, Y.; Fang, M.; Tan, X.; Hu, B.; Wang, X. Highly efficient selective elimination of heavy metals from solutions by different strategies. Sep. Purif. Technol. 2024, 350, 127975. [Google Scholar] [CrossRef]
- Ye, S.; Yang, C.; Sun, Y.; Guo, C.; Wang, J.; Chen, Y.; Zhong, C.; Qiu, T. Application and Mechanism of Lithium-ion Sieves in the Recovery of Lithium-Containing Wastewater: A Review. Water Air Soil Pollut. 2024, 235, 272. [Google Scholar] [CrossRef]
- Li, X.; Chen, L.; Chao, Y.; Chen, W.; Luo, J.; Xiong, J.; Zhu, F.; Chu, X.; Li, H.; Zhu, W. Amorphous TiO2-Derived Large-Capacity Lithium Ion Sieve for Lithium Recovery. Chem. Eng. Technol. 2020, 43, 1784–1791. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Yang, Y.; Lin, S.; Li, P. Preparation of granular titanium-type lithium-ion sieves and recyclability assessment for lithium recovery from brines with different pH value. Sep. Purif. Technol. 2021, 267, 118613. [Google Scholar] [CrossRef]
- Weng, D.; Duan, H.; Hou, Y.; Huo, J.; Chen, L.; Zhang, F.; Wang, J. Introduction of manganese based lithium-ion Sieve—A review. Prog. Nat. Sci. Mater. Int. 2020, 30, 139–152. [Google Scholar] [CrossRef]
- Sujoto, V.S.H.; Prasetya, A.; Petrus, H.T.B.M.; Astuti, W.; Jenie, S.N.A.; Anggara, F.; Utama, A.P.; Kencana, A.Y.; Singkuang, D.E.S.; Sumartha, A.G.A.; et al. Advancing Lithium Extraction: A Comprehensive Review of Titanium-Based Lithium-Ion Sieve Utilization in Geothermal Brine. J. Sustain. Metall. 2024, 10, 1959–1982. [Google Scholar] [CrossRef]
- Liu, M.; Wu, D.; Qin, D.; Yang, G. Spray-drying assisted layer-structured H2TiO3 ion sieve synthesis and lithium adsorption performance. Chin. J. Chem. Eng. 2022, 45, 258–267. [Google Scholar] [CrossRef]
- Sun, J.; Li, X.; Huang, Y.; Luo, G.; Tao, D.; Yu, J.; Chen, L.; Chao, Y.; Zhu, W. Preparation of high hydrophilic H2TiO3 ion sieve for lithium recovery from liquid lithium resources. Chem. Eng. J. 2023, 453, 139485. [Google Scholar] [CrossRef]
- Fangjie, C.; Yi, L.; Xun, Z.; Sheng, W.; Feng, X.; Shengui, J. Preparation and evaluation of H2TiO3@attapulgite with high adsorption and selectivity for lithium ions. Mater. Lett. 2023, 345, 134471. [Google Scholar] [CrossRef]
- Chen, S.; Chen, Z.; Wei, Z.; Hu, J.; Guo, Y.; Deng, T. Titanium-based ion sieve with enhanced post-separation ability for high performance lithium recovery from geothermal water. Chem. Eng. J. 2021, 410, 128320. [Google Scholar] [CrossRef]
- Udoetok, I.A.; Karoyo, A.H.; Ubuo, E.E.; Asuquo, E.D. Granulation of Lithium-Ion Sieves Using Biopolymers: A Review. Polymers 2024, 16, 1520. [Google Scholar] [CrossRef]
- Zhu, X.; Yue, H.; Sun, W.; Zhang, L.; Cui, Q.; Wang, H. Study on adsorption extraction process of lithium ion from West Taijinar brine by shaped titanium-based lithium ion sieves. Sep. Purif. Technol. 2021, 274, 119099. [Google Scholar] [CrossRef]
- Tang, C.M.; Zhang, L.; Li, J.Y.; Yue, H.H.; Sun, W.J.; Cui, Q.; Wang, H.Y. Effect of buffer on direct lithium extraction from Tibetan brine by formed titanium-based lithium ion sieves. New J. Chem. 2024, 48, 12450–12459. [Google Scholar] [CrossRef]
- Qian, J.; You, R.; Shen, C.; Xue, F.; Ju, S. Preparation of H2TiO3@GO for rapid adsorption of Li+ and its adsorption behaviour. Mater. Sci. Eng. B 2024, 302, 117220. [Google Scholar] [CrossRef]
- Xiao, X.; Li, J.; Qiu, K.; Chen, M.; Zhang, X. Dual surfactants-assisted adsorption of lithium ions in liquid lithium resources on a superhydrophilic spinel-type H4Ti5O12 ion sieve. Sep. Purif. Technol. 2024, 330, 125479. [Google Scholar] [CrossRef]
- Qin, W.; Xu, J.; Wei, X.; Han, J. Surface modification and spatial optimization of pre-lithiation TiO2 ion sieves for efficient extraction of lithium. Chem. Eng. J. 2024, 495, 153401. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, X.; Li, C.; Zhao, C.; Huang, Y.; Qiu, S.; Qin, Y.; Shi, C. Titanium-based lithium ion sieve adsorbent H2TiO3 with enhanced Li+ adsorption properties by magnetic Fe doping. Sep. Purif. Technol. 2024, 346, 127455. [Google Scholar] [CrossRef]
- Liu, Q.; Xing, H.; Zhang, Y.; Zhao, Y.; Rong, M.; Liu, H.; Yang, L. Highly hydrophilic H2TiO3 ion sieve with neodymium (Nd) doping enables fast and high-efficiency Li extraction. Sep. Purif. Technol. 2024, 345, 127263. [Google Scholar] [CrossRef]
- Liu, Q.; Du, Y.; Liu, M.; Li, X.; Huang, Z.; Guo, S.; Chen, R. Insights into Li+ adsorption using H2TiO3 in salt lakes with different hydrochemical types: The activity of OH groups. J. Ind. Eng. Chem. 2024, 138, 323–331. [Google Scholar] [CrossRef]
- Qu, W.; Fu, Y.; Zhang, Y.; Wang, W.; Xu, C.; Liu, C.; Zhang, Y.; Wang, Q.; Liu, B. Structural/surficial dual regulated granular H2TiO3 lithium-ion sieves for lithium extraction from salt lake brine. J. Clean. Prod. 2024, 449, 141789. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, J.; He, Y.; Zhao, C.; An, M.; Li, L. Porous polyvinyl alcohol/polyacrylamide hydrogels loaded with HTO lithium-ion sieves for highly rapid and efficient Li+ extraction. Desalination 2024, 580, 117587. [Google Scholar] [CrossRef]
- Lin, Y.; Li, M.; Wang, S.; Xue, F.; Ju, S. Fabrication of biomass carbonaceous aerogel-modified ion sieve composites for lithium adsorption. Mater. Lett. 2024, 363, 136282. [Google Scholar] [CrossRef]
- Zheng, L.; Chen, J.; Sun, J.; Liu, M.; Gao, Y.; Guo, Z. Highly selective lanthanide-doped ion sieves for lithium recovery from aqueous solutions. J. Chem. Res. 2023, 47, 17475198231159051. [Google Scholar] [CrossRef]
- Zhang, H.; Dong, B.; Yang, Y.; Long, X.; Chen, H.; Pan, J.; Zhou, C. Cu-doped titanium lithium-ion sieves with cell expansion and improved hydrophilicity for efficient extraction of lithium from aqueous resources. Chem. Eng. J. 2024, 495, 153545. [Google Scholar] [CrossRef]
- Zhao, K.; Li, J.; Yuan, J.; Yu, X.; Guo, Y.; Jiang, Z.; Li, M.; Duo, J.; Deng, T. A novel Co-doped H2TiO3 spinning composite for efficient lithium recovery from alkaline lithium precipitation mother liquor. Chem. Eng. J. 2024, 482, 148989. [Google Scholar] [CrossRef]
- Jin, Z.; Ma, T.; Liu, Y.; Jia, Z.; Tan, H.; Peng, W. Preparation of Doped Ti-Based Lithium Ion Sieve with Excellent Adsorption Capacity and Structural Stability; SSRN: Rochester, NY, USA, 2024. [Google Scholar] [CrossRef]
- Lin, M.; Meng, X.; Geng, W.; Yang, X.; Dong, D. Study on solvothermal synthesis of Li4Ti4.98Zr0.02O12 and its selectivity for ion exchange. Chem. Phys. 2024, 584, 112298. [Google Scholar] [CrossRef]
- Xue, F.; Wang, B.; Chen, M.; Yi, C.; Ju, S.; Xing, W. Fe3O4-doped lithium ion-sieves for lithium adsorption and magnetic separation. Sep. Purif. Technol. 2019, 228, 115750. [Google Scholar] [CrossRef]
- Gao, J.; Du, Z.; Zhao, Q.; Guo, Y.; Cheng, F. Enhanced Li+ adsorption by magnetically recyclable iron-doped lithium manganese oxide ion-sieve: Synthesis, characterization, adsorption kinetics and isotherm. J. Mater. Res. Technol. 2021, 13, 228–240. [Google Scholar] [CrossRef]
- Han, H.J.; He, Y.J.; Zhang, W.Z.; Gu, W.W.; Wu, Y.M.; Tang, W.P. Improved adsorption performance and magnetic recovery capability of Al–Fe co-doped lithium ion sieves. New J. Chem. 2022, 46, 19230–19240. [Google Scholar] [CrossRef]
- Zhang, Y.; Xing, H.; Meng, Q.; Liu, Q.; Liu, H.; Yang, L. Facets regulation of Li1.6Mn1.6O4 by B-doping to enable high stability and adsorption capacity for lithium extraction. Sep. Purif. Technol. 2024, 348, 127739. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, S.; Gao, F.; Guo, C.; Dong, J.; Chen, G. Al and Cr ions co-doped spinel manganese lithium ion-sieve with enhanced Li+ adsorption performance and structural stability. Microporous Mesoporous Mater. 2023, 351, 112492. [Google Scholar] [CrossRef]
- Ju, S.; Xue, F.; Qian, J.; Chen, F.; Wang, B. Synthesis of Ga3+ doped lithium manganese ion sieve for Li+ extraction and its adsorption thermodynamic behavior. Sep. Sci. Technol. 2022, 57, 2923–2936. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, K.; Ding, J.; Wang, W.; Lu, J. The modification of MnO2·0.5H2O by Al/Mg doping to enhance lithium adsorption and reduce manganese dissolution with application to brines. Hydrometallurgy 2023, 219, 106078. [Google Scholar] [CrossRef]
- Han, H.J.; Qu, W.; Zhang, Y.L.; Lu, H.D.; Zhang, C.L. Enhanced performance of Li+ adsorption for H1.6Mn1.6O4 ion-sieves modified by Co doping and micro array morphology. Ceram. Int. 2021, 47, 21777–21784. [Google Scholar] [CrossRef]
- Yang, X.; Lin, M.; Chu, J.; Dong, D. Preparation of highly hydrophilic cesium ion sieve and its performance in adsorbing Cs+. Chem. Phys. 2025, 588, 112438. [Google Scholar] [CrossRef]
- Geng, W.; Liu, Y.; Wang, D.; Lin, M.; Yang, X.; Zhong, L.; Lin, R.; Ding, L.; Wu, L.; Dong, D. H2Ti6O13 Nanosheet/Polymethyl Methacrylate (PMMA) for the adsorption of cesium ions. J. Solid State Chem. 2023, 324, 124047. [Google Scholar] [CrossRef]
- Boroumand, Y.; Razmjou, A. Adsorption-type aluminium-based direct lithium extraction: The effect of heat, salinity and lithium content. Desalination 2024, 577, 117406. [Google Scholar] [CrossRef]
- Guo, Y.; Yu, J.; Su, H.; Lin, S. Desorption enhancement of aluminum-based adsorbent in lithium extraction from sulfate-type salt lakes. Desalination 2024, 571, 117113. [Google Scholar] [CrossRef]
- Sun, Y.; Yun, R.; Zang, Y.; Pu, M.; Xiang, X. Highly Efficient Lithium Recovery from Pre-Synthesized Chlorine-Ion-Intercalated LiAl-Layered Double Hydroxides via a Mild Solution Chemistry Process. Materials 2019, 12, 1968. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Zhang, Y.; Su, H.; Yu, J.; Lin, S. Enhancing lithium extraction from low grade salt lake brines using high powder loading aluminum-based adsorbent granules. Desalination 2024, 583, 117696. [Google Scholar] [CrossRef]
- Gao, X.; Wang, Y.; Liu, X.; Zhang, R.; Sun, H.; Yin, P.; Huo, Y.; Yun, R.; Xiang, X. Modulating porosity and hydrophilicity of granular adsorbent by water-soluble polymers to enhance lithium extraction from ultrahigh Mg/Li ratio brine. Desalination 2024, 587, 117963. [Google Scholar] [CrossRef]
- Huo, J.; Hai, C.; Li, Y.; Sun, Y.; Dong, S.; Ma, L.; He, X.; Xu, Q.; Zhou, Y. Configuring a structure self-curable lithium aluminum layered double hydroxide chloride type lithium adsorbents via a facile one-pot synergistical modification way. Chem. Eng. J. 2024, 498, 155258. [Google Scholar] [CrossRef]
- Li, Y.; Hai, C.; Huo, J.; Pan, W.; Chen, T.; Li, X.; He, X.; Sun, Y.; Dong, S.; Ma, L.; et al. Performance activation mechanism of aluminum-based layered double hydroxides adsorbents for recovering Li+ by pH modulating. Chem. Eng. J. 2024, 494, 152919. [Google Scholar] [CrossRef]
- Zhang, R.; Yu, J.; Lin, S. An Antisolvent Extraction Strategy for Extrusion Granulation Enhancement of Aluminum-Based Lithium Adsorbent Used in Ultrahigh Mg2+/Li+ Salt Lake Brines. Ind. Eng. Chem. Res. 2024, 63, 2842–2850. [Google Scholar] [CrossRef]
- Chen, J.; Lin, S.; Yu, J. Instant Interlayer Restoration Strategy for Lithium Adsorption Engineering Enhancement in Sulfate-type Brines. ACS Appl. Mater. Interfaces 2024, 16, 34850–34858. [Google Scholar] [CrossRef]
- Qin, Y.; Yang, T.; Shi, C.; Liu, B. Adsorption of lithium ions from aqueous solution by magnetic aluminum-based adsorbents. PLoS ONE 2023, 18, e0295269. [Google Scholar] [CrossRef]
- Li, Y.; Tang, N.; Zhang, L.; Li, J. Fabrication of Fe-doped lithium-aluminum-layered hydroxide chloride with enhanced reusable stability inspired by computational theory and its application in lithium extraction. Colloids Surf. A Physicochem. Eng. Asp. 2023, 658, 130641. [Google Scholar] [CrossRef]
- Chen, J.; Huang, K.; Du, J.; Lian, C.; Yu, J.; Lin, S. Why is aluminum-based lithium adsorbent ineffective in Li+ extraction from sulfate-type brines. AIChE J. 2023, 69, e18176. [Google Scholar] [CrossRef]
- Chen, J.; Jin, J.; Yu, J.; Lin, S. Adsorption weakening mechanism and regulation strategy of aluminum-based lithium adsorbents in carbonate-style brines. AIChE J. 2024, 70, e18463. [Google Scholar] [CrossRef]
- Chen, J.; Lin, S.; Yu, J. Quantitative effects of Fe3O4 nanoparticle content on Li+ adsorption and magnetic recovery performances of magnetic lithium-aluminum layered double hydroxides in ultrahigh Mg/Li ratio brines. J. Hazard. Mater. 2020, 388, 122101. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Yang, X.; Wang, Z.; Hu, J.; Han, S.; Guo, Y.; Deng, T. Prussian blue analogs-based layered double hydroxides for highly efficient Cs+ removal from wastewater. J. Hazard. Mater. 2021, 410, 124608. [Google Scholar] [CrossRef]
- Li, X.D.; Shao, K.X.; Xu, G.M.; Xia, M.; Liu, X.Y.; Shang, Z.R.; Fan, F.Q.; Dou, J.F. A Prussian blue analog-based copper–aluminum layered double hydroxide for cesium removal from water: Fabrication, density functional theory-based molecular modeling, and the adsorption mechanism. Phys. Chem. Chem. Phys. 2023, 26, 1113–1124. [Google Scholar] [CrossRef]
- Khandaker, S.; Fujibayashi, M.; Kuba, T. Innovative potassium hexacyanoferrate intercalated into layered double hydroxide adsorbent for efficient cesium removal from seawater. Sep. Purif. Technol. 2025, 354, 128984. [Google Scholar] [CrossRef]
- Wang, J.; Huo, X.; Zhang, F.; Wang, L.; Wang, X.; Li, J.; Yang, J. Separation of cobalt and lithium from spent LiCoO2 batteries using zeolite NaA and the resulting ion exchange product for N2/O2 separation. Sep. Purif. Technol. 2023, 313, 123449. [Google Scholar] [CrossRef]
- Xu, J.; Wei, X.; Han, J.; Qin, W. Synthesis and optimisation mechanism of functionalised adsorption materials for lithium-ion extraction from salt water: A review. Sep. Purif. Technol. 2024, 339, 126237. [Google Scholar] [CrossRef]
- Khaleque, A.; Alam, M.M.; Hoque, M.; Mondal, S.; Haider, J.B.; Xu, B.; Johir, M.A.H.; Karmakar, A.K.; Zhou, J.L.; Ahmed, M.B.; et al. Zeolite synthesis from low-cost materials and environmental applications: A review. Environ. Adv. 2020, 2, 100019. [Google Scholar] [CrossRef]
- Abukhadra, M.R.; Mohamed, A.S. Adsorption Removal of Safranin Dye Contaminants from Water Using Various Types of Natural Zeolite. Silicon 2019, 11, 1635–1647. [Google Scholar] [CrossRef]
- Ibsaine, F.; Dionne, J.; Tran, L.H.; Coudert, L.; Pasquier, L.C.; Blais, J.F. Scaling up, mass balance and techno-economic study of a hydrothermal process used to synthesize zeolite from aluminosilicate residues obtained from lithium production. Miner. Eng. 2024, 216, 108841. [Google Scholar] [CrossRef]
- Ibsaine, F.; Dionne, J.; Tran, L.H.; Coudert, L.; Pasquier, L.C.; Blais, J.F. Application of aluminosilicate residue-based zeolite from lithium extraction in water treatment. Microporous Mesoporous Mater. 2025, 381, 113370. [Google Scholar] [CrossRef]
- Díez, E.; Redondo, C.; Gómez, J.M.; Miranda, R.; Rodríguez, A. Zeolite Adsorbents for Selective Removal of Co(II) and Li(I) from Aqueous Solutions. Water 2023, 15, 270. [Google Scholar] [CrossRef]
- Lee, S.; Kim, Y.; Akmal, M.; Ryu, H.J. Effects of Cold Sintering on the Performance of Zeolite 13X as a Consolidated Adsorbent for Cesium. ACS Appl. Mater. Interfaces 2023, 15, 36489–36499. [Google Scholar] [CrossRef] [PubMed]
- Battsetseg, B.; Kim, H.S.; Choo, H.; Lim, H.S.; Nath, S.; Kim, Y.H.; Lim, W.T. Exploring Mongolian natural zeolites as effective adsorbents for radioactive Cs and Sr. J. Porous Mater. 2024, 31, 747–758. [Google Scholar] [CrossRef]
- Hao, W.F.; Zhang, J.N.; Yan, W.F. Application of zeolite in the radioactive wastewater treatment. Chin. Sci. Bull. 2024, 69, 2221–2232. [Google Scholar] [CrossRef]
- Proust, V.; Leybros, A.; Gossard, A.; David, T.; Mao, Z.; Li, Y.; Hu, S.; Grandjean, A.; Zur Loye, H.C. Influence of porous aluminosilicate grain size materials in experimental and modelling Cs+ adsorption kinetics and wastewater column process. J. Water Process Eng. 2024, 66, 106066. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, X.; Gu, Y.; Zhang, S. An Evaluation of Cesium Removal from Simulated Radioactive Contaminated Soil with a Magnetized Zeolite Derived from Anthracite. Appl. Sci. 2023, 13, 12192. [Google Scholar] [CrossRef]
- Sharma, S.K.; Truong, D.Q.; Guo, J.; An, A.K.; Naidu, G.; Deka, B.J. Recovery of rubidium from brine sources utilizing diverse separation technologies. Desalination 2023, 556, 116578. [Google Scholar] [CrossRef]
- Muslim, W.A.; Al-Nasri, S.K.; Albayati, T.M.; Majdi, H.S. Treatment of actual radioactive wastewater containing Cs-137 using kaolinite clay minerals as eco-friendly adsorbents. Desalination Water Treat. 2023, 307, 162–170. [Google Scholar] [CrossRef]
- Muslim, W.A.; Al-Nasri, S.K.; Albayati, T.M. Evaluation of Bentonite, attapulgite, and kaolinite as eco-friendly adsorbents in the treatment of real radioactive wastewater containing Cs-137. Prog. Nucl. Energy 2023, 162, 104730. [Google Scholar] [CrossRef]
- Muslim, W.A.; Al-Nasri, S.A.; Albayati, T.M.; Salih, I.K. Attapulgite as an eco-friendly adsorbent in the treatment of real radioactive wastewater. Water Pract. Technol. 2023, 18, 2068–2079. [Google Scholar] [CrossRef]
- Kim, D.; Hwang, S.J.; Bae, S.H.; Ryoo, K.S. Comparative study for adsorptive removal of radioactive Cs+, Sr2+ and Co2+ ions from aqueous solution by acid-activated white clay. Environ. Eng. Res. 2024, 29, 240039. [Google Scholar] [CrossRef]
- Lujanienė, G.; Novikau, R.; Karalevičiūtė, K.; Pakštas, V.; Talaikis, M.; Levinskaitė, L.; Selskienė, A.; Selskis, A.; Mažeika, J.; Jokšas, K. Chitosan-minerals-based composites for adsorption of caesium, cobalt and europium. J. Hazard. Mater. 2024, 462, 132747. [Google Scholar] [CrossRef]
- Li, Z.; Yang, C.; Cho, K. Dittmarite-type magnesium phosphates for highly efficient capture of Cs+. J. Hazard. Mater. 2023, 453, 131385. [Google Scholar] [CrossRef]
- Vivas, E.L.; Kurtybayev, M.; Suh, Y.J.; Cho, K. Fiber-supported layered magnesium phosphate exhibits high caesium(I) capture capacity in water. J. Environ. Chem. Eng. 2023, 11, 110974. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Y.; Zhang, Q.; Han, W.; Zhang, H.; Ye, X. High-Efficiency Selective Adsorption of Rubidium and Cesium from Simulated Brine Using a Magnesium Ammonium Phosphate Adsorbent. Separations 2024, 11, 277. [Google Scholar] [CrossRef]
- Yan, J.; Zhang, B.; Li, J.; Yang, Y.; Wang, Y.N.; Zhang, Y.D.; Liu, X.Z. Rapid and Selective Uptake of Radioactive Cesium from Water by a Microporous Zeolitic-like Sulfide. Inorg. Chem. 2023, 62, 12843–12850. [Google Scholar] [CrossRef]
- Qi, C.; Ma, C.; Yang, S.; Guo, Y.; Yan, X.; Xiong, G.; Deng, T. An innovative method for effective rubidium recovery from wastewater using tungsten-doped microsphere magnetic tin sulfide. J. Environ. Chem. Eng. 2024, 12, 113295. [Google Scholar] [CrossRef]
- Liu, C.; Ge, H.; Yan, L.; Yu, X.; Guo, Y.; Belzile, N.; Deng, T. Readily regenerated porous fiber-supported metal tin sulfide for rapid and selective removal of cesium from wastewater. J. Clean. Prod. 2023, 401, 136729. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, J.; Ni, S.; Xing, H.; Meng, Q.; Bian, Y.; Xu, Z.; Rong, M.; Liu, H.; Yang, L. Cation-Intercalated Lamellar MoS2 Adsorbent Enables Highly Selective Capture of Cesium. ACS Appl. Mater. Interfaces 2023, 15, 49095–49106. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.H.; Jia, S.Q.; Liu, J.T.; Yang, L.; Sun, H.Y.; Feng, M.L.; Huang, X.Y. “Ion-imprinting” strategy towards metal sulfide scavenger enables the highly selective capture of radiocesium. Nat. Commun. 2024, 15, 4281. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Ma, B.; Liu, Y.; Wang, C.; Chen, Y. A novel adsorbent potassium magnesium ferrocyanide for selective separation and extraction of rubidium and cesium from ultra-high salt solutions. J. Water Process Eng. 2023, 55, 104225. [Google Scholar] [CrossRef]
- Ni, J.; Sun, B.; Liu, P.; Jin, G.P. Preparation of a core-shell magnetic potassium nickel copper hexacyanoferrate/zeolitic imidazolate framework composite for rubidium adsorption. J. Solid State Chem. 2024, 331, 124554. [Google Scholar] [CrossRef]
- Wang, H.; Hu, C.; Du, Y.; Liu, R.; Liu, Z.; Han, L.; Zhou, Y. Construction of potassium cobalt iron cyanide double-hollow nanobubble prisms for high selective adsorption of cesium. J. Water Process Eng. 2024, 59, 104944. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, X.; Gan, J.; Yu, X.; Wang, H.; Ou, R. Building block design of thermally regenerable metal–organic framework composites for highly selective lithium adsorption. Chem. Eng. J. 2024, 499, 156352. [Google Scholar] [CrossRef]
- Zhang, B.; Zhao, H.; Gao, Y.; Wang, Q.; Xi, Z.; Wang, K. Experimental study on the open adsorption performance of CAU-10-H and its composite adsorbent. J. Solid State Chem. 2023, 321, 123930. [Google Scholar] [CrossRef]
- Suresh, K.; Jagasia, P.; Babu, M.S.S. Hierarchical mesoporous spherical Zn(4-hzba) MOF for efficient adsorption of Strontium and Caesium ions from aqueous solution. Surf. Interfaces 2023, 39, 102944. [Google Scholar] [CrossRef]
- Suresh, K.; Babu, M.S.S.; Jagasia, P. Zirconium based metal-organic framework as highly efficient and acid-stable adsorbent for the rapid removal of Sr2+ and Cs+ from solution. Sep. Purif. Technol. 2024, 335, 126052. [Google Scholar] [CrossRef]
- Zhang, H.; Chi, Y.; Li, J.; Peng, J.; Song, H.; Chen, C.; Bai, X. Enhanced adsorption of radioactive cesium from nuclear wastewater using ZIF-67 laminated 2D MXene Ti3C2. Sep. Purif. Technol. 2025, 355, 129590. [Google Scholar] [CrossRef]
- Truong, D.Q.; Choo, Y.; Akther, N.; Roobavannan, S.; Norouzi, A.; Gupta, V.; Blumenstein, M.; Nguyen, T.V.; Naidu, G. Selective rubidium recovery from seawater with metal-organic framework incorporated potassium cobalt hexacyanoferrate nanomaterial. Chem. Eng. J. 2023, 454, 140107. [Google Scholar] [CrossRef]
- Sodzidzi, Z.; Phiri, Z.; Nure, J.F.; Msagati, T.A.M.; de Kock, L.-A. Adsorption of Toxic Metals Using Hydrous Ferric Oxide Nanoparticles Embedded in Hybrid Ion-Exchange Resins. Materials 2024, 17, 1168. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Bao, L.R.; Gu, X.N.; Sun, S.Y. Lithium selective adsorption mechanism and properties of dibenzoylmethane/trioctylphosphine oxide impregnated resin from alkaline solution by DFT calculation and adsorption measurements. J. Water Process Eng. 2024, 61, 105311. [Google Scholar] [CrossRef]
- Wu, Y.H.; Guo, W.; Sun, Y.Z.; Sun, S.Y. Resin functionalized with 2-(hydroxymethyl)-12-crown-4 ether for selective adsorption of lithium ions from desilication solution of coal-based solid waste. Sep. Purif. Technol. 2025, 355, 129500. [Google Scholar] [CrossRef]
- Lee, C.H.; Chen, W.S.; Liu, F.W. Resources recovery-rubidium recovery from desalination brine through hydrometallurgy techniques. Sustain. Environ. Res. 2024, 34, 7. [Google Scholar] [CrossRef]
- Kim, G.; Lim, J.M.; Kim, H. Rapid concentration method for radiocesium in seawater using AMP-PAN resin and sample loading equipment. J. Radioanal. Nucl. Chem. 2024, 333, 2361–2367. [Google Scholar] [CrossRef]
- Yang, J.; Wang, M.; Zhang, L.; Lu, Y.; Di, B.; Shi, K.; Hou, X. Investigation on the thermal stability of cesium in soil pretreatment and its separation using AMP-PAN resin. J. Radioanal. Nucl. Chem. 2023, 332, 877–885. [Google Scholar] [CrossRef]
- Wang, M.; Fu, M.; Li, J.; Niu, Y.; Zhang, Q.; Sun, Q. New insight into polystyrene ion exchange resin for efficient cesium sequestration: The synergistic role of confined zirconium phosphate nanocrystalline. Chin. Chem. Lett. 2024, 35, 108442. [Google Scholar] [CrossRef]
Type of Adsorbent/Reference | Type of Solution | Main Advantages |
---|---|---|
Titanium-based graphene oxide lithium ion sieve HTO@GO [47] | Salt lake brine | The Li+ adsorption capacity of HTO@GO was 38.3 mg/g. The results indicate that HTO@GO has good industrial potential with fast Li+ adsorption. |
Superhydrophilic spinel-type H4Ti5O12 ion sieve with surface wettability adjusted with dual surfactants [48] | Lithium containing solutions | The Li+ adsorption was about 85% within 0.5 h, the maximum adsorption capacity was 57.90 mg/g. Adsorption ratio of the ion sieve remained at around 97% after five adsorption–desorption cycles. |
The rich-porous HTO with an N-modified interface [49] | Low concentration lithium solutions | The Li+ adsorption capacity was 49.05 mg/g, it remained at about 96% after 5 cycles. This method can be good strategy for effective extraction of lithium ions from low concentration solutions. |
Iron-doped titanium-based lithium ion sieve (HFTO) [50] | Lithium containing solutions | The Li+ adsorption capacity was 34.27 mg/g, after five cycles of adsorption–desorption, adsorbent maintained an adsorption capacity of about 32.00 mg/g. |
Highly hydrophilic HTO lithium ion sieve with neodymium doping (1%), Nd-HTO-1% and unmodified HTO ion sieve [51] | Qarhan salt lake brine | The Li+ adsorption capacity of Nd-HTO-1% was 43.02 mg/g, Nd-doped HTO increased adsorption capacity by 12.5% compared to the undoped one, and reduced adsorption time by half to 4 h. |
HTO [52] | Carbonate-type, sulfate-type, and chloride-type salt lakes solutions | The activity of Li+ adsorption sites was affected by the specific hydrochemical types of salt lakes, the adsorption of Li+ by HTO was in the order of SO42− (40.08 mg/g) > Cl− (36.66 mg/g) > CO32− (30.18 mg/g). |
Hybrid binder (cellulose acetate/sulfonated poly(ether ketone)/poly(vinyl chloride)) granulated HTO [53] | Salt lake brine | Adsorbent showed high extraction capacity (26.54 mg/g), recovery kinetics (19.02 mg/g within 4 h), and dynamic cycling stability (adsorption capacity retention of 94% after 40 cycles). |
Porous polyvinyl alcohol/polyacrylamide hydrogels loaded with HTO (HTO-PVA/PAAm hydrogel) [54] | Lithium containing solutions | The HTO-PVA/PAAm adsorption capacity of Li+ was 22.16 and 31.31 mg/g in pH 7.2 and 12, the hydrogel is non-toxic and environmentally friendly, potentially can be used in the extraction of Li+ ions from salt-lake brine and seawater. |
Type of Adsorbent/Reference | Type of Solution | Main Advantages |
---|---|---|
Granulated adsorbent HMAG prepared using Li/Al-LDH powder, PVC/PM as the binder and N, N-dimethylformamide as bonding agent [74] | Qarhan low grade salt lake brines | HMAG granules exhibited higher than the conventional adsorbent granules powder loading (86%) and superior hydrophilicity, demonstrated a remarkable adsorption performance (Li+ adsorption capacity was 2791.00 mg/L after a 6 h feed period). |
Granular aluminum-based adsorbents with polysulfone (PSF) as a binder regulating the structure, and poly(ethylene glycol) (PEG) and polyvinylpyrrolidone (PVP) as pore-making agents [75] | Old brine of Qarhan salt lake | High adsorption capacity of optimized PSF-PEG containing adsorbent (99.02% after 10 static adsorption–desorption cycles), excellent cyclic stability, adsorbent with adjustable pore structure and surface properties. |
Co-LDHs-SO4 [76] | Sulfate-type West Taijinar salt lake brines | Adsorbent characterized by high anti-deactivation property, excellent structure reversibility, high adsorption capacity (<10 mg/g), excellent Li+/Na+, Li+/Mg2+, Li+/K+ separation coefficients (236.7, 187.2 and 282.6, respectively). |
Aluminum-based H-LDHs prepared by a precipitation method followed by water elution [77] | Model solutions | High adsorption capacity of adsorbent (8.4 mg/g of Li+), unique self-healing ability and cycling stability. |
Granulated LDHs adsorbents produced by novel extrusion granulation method and with an antisolvent strategy [78] | Ultrahigh Mg2+/Li+ salt lake brines | Great adsorption performance of adsorbent granules in brine with a Mg2+/Li+ mass ratio of 294.24, Li+ adsorption capacity was stable at 4.45–4.86 mg/g in 24 cycles without structural transformation of material. |
Li/Al-LDHs, with an interlayer restoration strategy for SO42− intercalated Li/Al-LDHs [79] | Sulfate-type brines | The cyclic Li+ adsorption and desorption capacities in the enhanced process reached higher values in comparison to conventional process. |
Magnetic aluminum-based adsorbents (MLDHs) prepared by homogeneously doping silicon dioxide coated ferric tetroxide nanoparticles (Fe3O4@SiO2) into LDHs [80] | Aqueous solutions, mixed solution of various metal ions | Adsorption capacity of MLDHs for Li+ reached 8.22 mg/g, MLDHs have good selectivity for lithium ions and exhibited good stability. |
Type of Adsorbent/Reference | Type of Solution | Main Advantages |
---|---|---|
Porous fiber-supported metal tin sulfide PVC-[Me2NH2](2)Sn3S7 [111] | Simulated wastewater with cesium ions | High adsorption capacity (419 mg/g) in 30 min and a wide active pH range. After 50 cycles of regeneration, the adsorbent still had good adsorption performance. |
Cation (Na+ or NH4+) intercalated lamellar MoS2 [112] | Simulated brines with Cs+, Li+, Na+, K+, Mg2+, Ca2+ ions | The best-performing NH4+-intercalated material was highly selective for cesium ions over competing ions. |
Ion-imprinted adsorbent Cs2.33Ga2.33Sn1·67S8·H2O [113] | Actual 137Cs-liquid-wastes generated during industrial production | The adsorbent reached adsorption equilibrium for Cs+ within 5 min (adsorption capacity of 246.6 mg/g), enabling highly selective removal (over 99%) of cesium ions from complex wastewater. |
pNCE-SS@UiO-66 [117] | Synthetic brines with Li+ and Mg2+ ions | High selectivity towards Li+ ions with high adsorption capacity (1.47 mmol/g), easy regeneration of adsorbent in warm water. |
Mesoporous spherical Zn(4-hzba)MOF [119] | Model solution with Sr2+, Cs+, Na+, K+, Ca2+, Mg2+ | High selectivity and adsorption efficiency of Sr2+ and Cs+ ions in simulated seawater (92.3% and 96.7%, respectively). |
KCoFC@ZIF [122] | Seawater | KCoFC@ZIF showed 8-folds higher rubidium ions uptake compared to KCoFC and was efficient for selective Rb+ ions uptake in seawater. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaczorowska, M.A. Novel and Sustainable Materials for the Separation of Lithium, Rubidium, and Cesium Ions from Aqueous Solutions in Adsorption Processes—A Review. Materials 2024, 17, 6158. https://doi.org/10.3390/ma17246158
Kaczorowska MA. Novel and Sustainable Materials for the Separation of Lithium, Rubidium, and Cesium Ions from Aqueous Solutions in Adsorption Processes—A Review. Materials. 2024; 17(24):6158. https://doi.org/10.3390/ma17246158
Chicago/Turabian StyleKaczorowska, Małgorzata A. 2024. "Novel and Sustainable Materials for the Separation of Lithium, Rubidium, and Cesium Ions from Aqueous Solutions in Adsorption Processes—A Review" Materials 17, no. 24: 6158. https://doi.org/10.3390/ma17246158
APA StyleKaczorowska, M. A. (2024). Novel and Sustainable Materials for the Separation of Lithium, Rubidium, and Cesium Ions from Aqueous Solutions in Adsorption Processes—A Review. Materials, 17(24), 6158. https://doi.org/10.3390/ma17246158