Porphyrin-Based Aluminum Metal-Organic Framework with Copper: Pre-Adsorption of Water Vapor, Dynamic and Static Sorption of Diethyl Sulfide Vapor, and Sorbent Regeneration
Highlights
- A new aluminum metal–organic framework with porphyrin and copper is synthesized.
- It is characterized via elemental analysis and structural and spectroscopic methods.
- It sorbs water plus diethyl sulfide to create a ternary stoichiometric adsorption complex.
- Diethyl sulfide bonds with hydroxy, carboxylate, and porphyrin groups.
- This sorbent can be used for the removal of volatile organosulfur compounds from moist air.
Abstract
:1. Introduction
- (a)
- The synthesis of a new porphyrin aluminum metal–organic framework with copper in the porphyrin ring; see Figure 2 (denoted as compound 4).
- (b)
- The thermal activation of the product to remove the volatile impurities, followed by analysis by complementary destructive and non-destructive methods.
- (c)
- Study of the mechanism of interaction of the activated compound 4 with vapor of DES under dynamic conditions in flowing air, using the novel method of in situ time-dependent ATR-FTIR spectroscopy in a controlled atmosphere.
- (d)
- The pre-adsorption of water vapor on compound 4 at controlled air humidity, with the formation of the binary adsorption complex.
- (e)
- The effect of pre-adsorbed water on the capability of compound 4 to subsequently adsorb vapor of DES under dynamic (flow) conditions.
- (f)
- The effect of pre-adsorbed water on the ability of compound 4 to adsorb DES vapor under static (equilibrium) conditions.
- (g)
- Facile regeneration of the so-obtained “spent” sorbent.
2. Materials and Methods
2.1. Synthesis of actAl-MOF-TCPPCu (Compound 4)
2.2. Gravimetric Analysis at Enhanced Accuracy
2.3. The Quantitative Spectrophotometric Determination of Copper in Compound 4
2.4. The Instrumental Characterization of Sorbent, Adsorbate, and Products of Their Interaction
2.5. Pre-Hydration of Compound 4 actAl-MOF-TCPPCu with Water Vapor
2.6. The Dynamic Sorption of DES Vapor by Activated Compound 4, and by Hydrated Compound 4 Using in Situ Time-Dependent ATR-FTIR Spectroscopy
2.7. The Static Sorption of DES Vapor by the Binary Adsorption Complex to the Ternary Adsorption Complex (Al-MOF-TCPPCu)1(H2O)X(DES)y and Sorbent Regeneration
3. Results and Discussion
3.1. Instrumental Analyses of Sorbent Compound 4 and Adsorbate DES
3.2. The Progressive Sorption of DES Vapor by Activated Compound 4 Using in Situ Time-Dependent ATR-FTIR Spectroscopy
3.3. The Kinetics of in Situ Sorption of DES Vapor by the Activated Compound 4
3.4. The Pre-Hydration of Compound 4, Followed by Dynamic Sorption of DES Vapor by in Situ Time-Dependent ATR-FTIR Spectroscopy in a Controlled Atmosphere
3.5. The Pre-Hydration of Compound 4, Followed by the Static Sorption of DES Vapor and Sorbent Regeneration
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hasan, Z.; Jhung, S.H. Removal of hazardous organics from water using metal-organic frameworks (MOFs): Plausible mechanisms for selective adsorptions. J. Hazard. Mater. 2015, 283, 329–339. [Google Scholar] [CrossRef]
- Xiong, Y.-Y.; Chen, H.; Chen, C.-X.; Lan, B.; Pham, T.; Forrest, K.A.; Wei, Z.-W.; Pan, M.; Su, C.-Y. Enhancing acetylene/ethylene separation through cation exchange in an anion-pillared hybrid ultramicroporous MOF. Ind. Eng. Chem. Res. 2024, 63, 13826–13833. [Google Scholar] [CrossRef]
- Harvey, J.A.; McEntee, M.L.; Garibay, S.J.; Durke, E.M.; DeCoste, J.B.; Greathouse, J.A.; Gallis, D.F.S. Spectroscopically resolved binding sites for the adsorption of Sarin gas in a metal–organic framework: Insights beyond Lewis acidity. J. Phys. Chem. Lett. 2019, 10, 5142–5147. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Wang, X.; Li, D.; Yi, Z. Emission of volatile organic sulfur compounds (VOSCs) during aerobic decomposition of food wastes. Atmos. Environ. 2010, 44, 5065–5071. [Google Scholar] [CrossRef]
- Lu, W.; Duan, Z.; Li, D.; Jimenez, L.M.C.; Liu, Y.; Guo, H.; Wang, H. Characterization of odor emission on the working face of landfill and establishing of odorous compounds index. Waste Manag. 2015, 42, 74–81. [Google Scholar] [CrossRef]
- Ramakrishna, C.; Shekar, S.C.; Gupta, A.K.; Saini, B.; Krishna, R.; Swetha, G.; Gopi, T. Degradation of diethyl sulfide vapors with manganese oxide catalysts supported on zeolite-13X: The influence of process parameters and mechanism in presence of ozone. J. Environ. Chem. Eng. 2017, 5, 1484–1493. [Google Scholar] [CrossRef]
- Prasad, G.K.; Singh, B.; Saradhi, U.V.R.; Suryanarayana, M.V.S.; Pandey, D. Adsorption and reaction of diethyl sulfide on active carbons with and without impregnants under static conditions. Langmuir 2002, 18, 4300–4306. [Google Scholar] [CrossRef]
- Pourebrahimi, S.; Pirooz, M.; Kazemeini, M.; Vafajoo, L. Synthesis, characterization, gas (SO2, CO2, NO2, CH4, and N2) adsorption properties of the CTF-1 covalent triazine framework-based porous polymer: Experimental and DFT studies. J. Porous Mater. 2024, 31, 643–657. [Google Scholar] [CrossRef]
- Fateeva, A.; Chater, P.A.; Ireland, C.P.; Tahir, A.A.; Khimyak, Y.Z.; Wiper, P.V.; Darwent, J.R.; Rosseinsky, M.J. A water-stable porphyrin-based metal–organic framework active for visible-light photocatalysis. Angew. Chem. Int. Ed. 2012, 51, 7440–7444. [Google Scholar] [CrossRef]
- Banga-Bothy, G.-A.; Samokhvalov, A. Porphyrin aluminum MOF with ultra-high water sorption capacity: In-situ time-dependent ATR-FTIR spectroscopy and gravimetry to study mechanism of water bonding and desorption. Vib. Spectrosc. 2022, 119, 103356. [Google Scholar] [CrossRef]
- Xian, S.K.; Yu, Y.; Xiao, J.; Zhang, Z.J.; Xia, Q.B.; Wang, H.H.; Li, Z. Competitive adsorption of water vapor with VOCs dichloroethane, ethyl acetate and benzene on MIL-101(Cr) in humid atmosphere. RSC. Adv. 2015, 5, 1827–1834. [Google Scholar] [CrossRef]
- Sardo, M.; Afonso, R.; Juźków, J.; Pacheco, M.; Bordonhos, M.; Pinto, M.L.; Gomes, J.R.B.; Mafra, L. Unravelling moisture-induced CO2 chemisorption mechanisms in amine-modified sorbents at the molecular scale. J. Mater. Chem. A 2021, 9, 5542–5555. [Google Scholar] [CrossRef]
- Loiseau, T.; Serre, C.; Huguenard, C.; Fink, G.; Taulelle, F.; Henry, M.; Bataille, T.; Ferey, G. A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chem. Eur. J. 2004, 10, 1373–1382. [Google Scholar] [CrossRef] [PubMed]
- Wilfong, W.C.; Srikanth, C.S.; Chuang, S.S.C. In situ ATR and DRIFTS studies of the nature of adsorbed CO2 on tetraethylenepentamine films. ACS Appl. Mater. Interfaces 2014, 6, 13617–13626. [Google Scholar] [CrossRef] [PubMed]
- Swanson, J.; Kittelson, D. A method to measure static charge on a filter used for gravimetric analysis. Aerosol Sci. Technol. 2008, 42, 714–721. [Google Scholar] [CrossRef]
- Mehlig, J. Colorimetric determination of copper with ammonia. Ind. Eng. Chem. Anal. Ed. 1941, 13, 533–535. [Google Scholar] [CrossRef]
- Wexler, A.; Hasegawa, S. Relative humidity-temperature relationships of some saturated salt solutions in the temperature range 0 to 50 C. J. Res. Natl. Bur. Stand. 1954, 53, 2512. [Google Scholar] [CrossRef]
- Ullah, S.; McKee, M.L.; Samokhvalov, A. Interaction of a porphyrin aluminum metal–organic framework with volatile organic sulfur compound diethyl sulfide studied via in situ and ex situ experiments and DFT computations. Nanomaterials 2023, 13, 2916. [Google Scholar] [CrossRef]
- Langford, J.I.; Wilson, A.J.C. Scherrer after sixty years: A survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 1978, 11, 102–113. [Google Scholar] [CrossRef]
- Samokhvalov, A. Aluminum metal–organic frameworks for sorption in solution: A review. Coord. Chem. Rev. 2018, 374, 236–253. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, J.; Dong, L.Z.; Xu, Y.; Han, W.; Fang, M.; Liu, H.K.; Wu, Y.; Lan, Y.Q. Syntheses of exceptionally stable aluminum(III) metal–organic frameworks: How to grow high quality, large, single crystals. Chem. Eur. J. 2017, 23, 15518–15528. [Google Scholar] [CrossRef] [PubMed]
- Christesen, S.D. Vibrational spectra and assignments of diethyl sulfide, 2-chlorodiethyl sulfide and 2, 2′-dichlorodiethyl sulfide. J. Raman Spectrosc. 1991, 22, 459–465. [Google Scholar] [CrossRef]
- Ohta, M.; Ogawa, Y.; Matsuura, H.; Harada, I.; Shimanouchi, T. Vibration spectra and rotational isomerism of chain molecules. IV. Diethyl sulfide, ethyl propyl sulfide, and butyl methyl sulfide. Bull. Chem. Soc. Jpn. 1977, 50, 380–390. [Google Scholar] [CrossRef]
- Wan, J.; Wang, H.; Wu, Z.; Shun, Y.C.; Zheng, X.; Phillips, D.L. Resonance Raman spectroscopy and density functional theory calculation study of photodecay dynamics of tetra(4-carboxyphenyl) porphyrin. Phys. Chem. Chem. Phys. 2011, 13, 10183–10190. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, P.J.; Benzie, J.W.; Bakhmutov, V.I.; Blümel, J. Disentangling different modes of mobility for triphenylphosphine oxide adsorbed on alumina. J. Chem. Phys. 2020, 152, 054718. [Google Scholar] [CrossRef] [PubMed]
- Glass, R.W.; Ross, R.A. Surface studies of the adsorption of sulfur-containing gases at 423.Deg.K on porus adsorbents. II. Adsorption of hydrogen sulfide, methanethiol, ethanethiol, and dimethyl sulfide on gamma-alumina. J. Phys. Chem. 1973, 77, 2576–2578. [Google Scholar] [CrossRef]
- Possenti, E.; Colombo, C.; Realini, M.; Song, C.L.; Kazarian, S.G. Time-resolved ATR-FTIR spectroscopy and macro ATR-FTIR spectroscopic imaging of inorganic treatments for stone conservation. Anal. Chem. 2021, 93, 14635–14642. [Google Scholar] [CrossRef]
- Brancher, R.D.; Stefanov, S.; Graur, I.; Frezzotti, A. A kinetic model for gas adsorption-desorption at solid surfaces under non-equilibrium conditions. Vacuum 2020, 174, 109166. [Google Scholar] [CrossRef]
- Tofan-Lazar, J.; Al-Abadleh, H.A. Kinetic ATR-FTIR studies on phosphate adsorption on iron (oxyhydr)oxides in the absence and presence of surface arsenic: Molecular-level insights into the ligand exchange mechanism. J. Phys. Chem. A 2012, 116, 10143–10149. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, M.S.; Samokhvalov, A. Porphyrin-Based Aluminum Metal-Organic Framework with Copper: Pre-Adsorption of Water Vapor, Dynamic and Static Sorption of Diethyl Sulfide Vapor, and Sorbent Regeneration. Materials 2024, 17, 6160. https://doi.org/10.3390/ma17246160
Ahmad MS, Samokhvalov A. Porphyrin-Based Aluminum Metal-Organic Framework with Copper: Pre-Adsorption of Water Vapor, Dynamic and Static Sorption of Diethyl Sulfide Vapor, and Sorbent Regeneration. Materials. 2024; 17(24):6160. https://doi.org/10.3390/ma17246160
Chicago/Turabian StyleAhmad, Mohammad Shahwaz, and Alexander Samokhvalov. 2024. "Porphyrin-Based Aluminum Metal-Organic Framework with Copper: Pre-Adsorption of Water Vapor, Dynamic and Static Sorption of Diethyl Sulfide Vapor, and Sorbent Regeneration" Materials 17, no. 24: 6160. https://doi.org/10.3390/ma17246160
APA StyleAhmad, M. S., & Samokhvalov, A. (2024). Porphyrin-Based Aluminum Metal-Organic Framework with Copper: Pre-Adsorption of Water Vapor, Dynamic and Static Sorption of Diethyl Sulfide Vapor, and Sorbent Regeneration. Materials, 17(24), 6160. https://doi.org/10.3390/ma17246160