Harnessing a Dielectric/Plasma Photonic Crystal as an Optical Microwave Filter: Role of Defect Layers and External Magnetic Fields
Abstract
:1. Introduction
2. Theoretical Modeling
3. Results and Discussion
3.1. Periodic Structure under Magnetic Field
3.2. Effects of a Defect Layer on the Resonant States
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Joannopoulos, J.D.; Johnson, S.G.; Winn, J.N.; Meade, R.D. Photonic Crystals: Molding the Flow of Light, 2nd ed.; Princeton University Press: Princeton, NJ, USA, 2008. [Google Scholar]
- Knight, J.C.; Broeng, J.; Birks, T.A.; Russell, P.S.J. Photonic Band Gap Guidance in Optical Fibers. Science 1998, 282, 1476–1478. [Google Scholar] [CrossRef] [PubMed]
- Bowden, C.M.; Dowling, J.P.; Everitt, H.O. Development and application of materials exhibiting photonic band gaps. J. Opt. Soc. Am. B 1993, 10, 280–413. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, X. Unusual Transmission Properties of Wave in One Dimensional Random System Containing Left-handed-material. Phys. Lett. A 2006, 359, 542. [Google Scholar] [CrossRef]
- Khaalkhali, T.F.; Rezaei, B.; Kalafi, M. Enlargement of Absolute Photonic Band Gap in Modified 2D Anisotropic Annular Photonic Crystals. Opt. Commun. 2011, 284, 3315. [Google Scholar] [CrossRef]
- Wong, B.M.; Morales, A.M. Enhanced Photocurrent Efficiency of a Carbon Nanotube p–n Junction Electromagnetically Coupled to a Photonic Structure. J. Phys. D Appl. Phys. 2009, 42, 055111. [Google Scholar] [CrossRef]
- Ilinykh, V.A.; Matyushkin, L.B. Sol-gel Fabrication of One-dimensional Photonic Crystals with Predicted Transmission Spectra. J. Phys. Conf. Ser. 2016, 741, 012008. [Google Scholar] [CrossRef]
- Dupuis, J.; Fourmond, E.; Ballutaud, D.; Bererd, N.; Lemiti, M. Optical and Structural Properties of Silicon Oxynitride Deposited by Plasma Enhanced Chemical Vapor Deposition. Thin Solid Film 2010, 519, 1325. [Google Scholar] [CrossRef]
- Kartopu, G.; Oklobia, O.; Tansel, T.; Jones, S.; Irvine, S.J.C. A Facile Photolithography Process Enabling Pinhole-free Thin Film Photovoltaic Modules on Soda-lime Glass. Sol. Energy Mater. Sol. Cells 2023, 251, 112112. [Google Scholar] [CrossRef]
- Jiang, H.; Chen, H.; Li, H.; Zhang, Y.; Zhu, S. Omnidirectional Gap and Defect Mode of One-dimensional Photonic Crystals Containing Negative-index Materials. Appl. Phys. Lett. 2003, 83, 5386. [Google Scholar] [CrossRef]
- Wang, L.-G.; Chen, H.; Zhu, S.-Y. Omnidirectional Gap and Defect Mode of One-dimensional Photonic Crystals with Single-negative Materials. Phys. Rev. B 2004, 70, 245102. [Google Scholar] [CrossRef]
- Rao, V.S.C.M.; Hughes, S. Single Quantum Dot Spontaneous Emission in a Finite-Size Photonic Crystal Waveguide: Proposal for an Efficient “On Chip” Single Photon Gun. Phys. Rev. Lett. 2007, 99, 193901. [Google Scholar] [CrossRef] [PubMed]
- Yanik, M.F.; Fan, S.; Solijacic, M. High-contrast All-optical Bistable Switching in Photonic Crystal Microcavities. Appl. Phys. Lett. 2003, 83, 2739. [Google Scholar] [CrossRef]
- John, S.; Florescu, M. Photonic Bandgap Materials: Towards an All-optical Micro-transistor. J. Opt. A Pure Appl. Opt. 2001, 3, S103. [Google Scholar] [CrossRef]
- Weily, A.R.; Esselle, K.P.; Sanders, B.C. Photonic Crystal Horn and Array Antennas. Phys. Rev. E 2003, 68, 016609. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, M.; Awasthi, S.K.; Shiveshwari, L.; Shukla, S.N.; Ojha, S.P. Two Channel Thermally Tunable Band-Stop Filter for Wavelength Selective Switching Applications by Using 1D Ternary Superconductor Photonic Crystal. J. Supercond. Novel Magn. 2015, 28, 1937. [Google Scholar] [CrossRef]
- Upadhyay, M.; Awasthi, S.K.; Shiveshwari, L.; Shukla, S.N.; Ojha, S.P. Temperature-dependent Tuning of Photonic Band Gaps for Wavelength-selective Switching Applications. Indian J. Phys. 2015, 90, 353. [Google Scholar] [CrossRef]
- Hamidi, S.M. Optical and Magneto-optical Properties of One-dimensional Magnetized Coupled Resonator Plasma Photonic Crystals. Phys. Plasmas 2012, 19, 012503. [Google Scholar] [CrossRef]
- Aghajamali, A.; Zare, A.; Wu, C.-J. Analysis of Defect Mode in a One-dimensional Symmetric Double-negative Photonic Crystal Containing Magnetized Cold Plasma Defect. Appl. Opt. 2015, 54, 8602. [Google Scholar] [CrossRef]
- Qi, L.; Yang, Z.; Lan, F.; Gao, X.; Shi, Z. Properties of Obliquely Incident Electromagnetic Wave in One-dimensional Magnetized Plasma Photonic Crystals. Phys. Plasmas 2010, 17, 042501. [Google Scholar] [CrossRef]
- Kee, C.-S.; Li, S.-Z.; Kim, K.; Lim, H. Tunable Resonant Transmission of Electromagnetic Waves Through a Magnetized Plasma. Phys. Rev. E 2003, 67, 036612. [Google Scholar] [CrossRef]
- Zhang, H.-F.; Liu, S.-B.; Kong, X.-K. Photonic Band Gaps in One-dimensional Magnetized Plasma Photonic Crystals with Arbitrary Magnetic Declination. Phys. Plasmas 2012, 19, 122103. [Google Scholar] [CrossRef]
- Kong, X.-K.; Liu, S.-B.; Zhang, H.-F.; Li, C.-Z. A Novel Tunable Filter Featuring Defect Mode of the TE Wave from One-dimensional Photonic Crystals Doped by Magnetized Plasma. Phys. Plasmas 2010, 17, 103506. [Google Scholar] [CrossRef]
- Bin, G.; Li, P.; Xiaoming, Q. Tunability of One-Dimensional Plasma Photonic Crystals with an External Magnetic Field. Plasma Sci. Technol. 2013, 15, 609. [Google Scholar]
- Li, C.-Z.; Liu, S.-B.; Kong, X.-K.; Zhang, H.-F.; Bian, B.-R.; Zhang, X.-Y. A Novel Comb-Like Plasma Photonic Crystal Filter in the Presence of Evanescent Wave. IEEE Trans. Plasma Sci. 2011, 39, 1969. [Google Scholar] [CrossRef]
- Belhadj, W.; Alsalmi, O.H.; Dakhlaoui, H.; Segovia-Chaves, F. Transmittance spectra of (YBa2Cu3O7−x/BaTiO3) 1D Photonic Crystals: The Role of GaAs and AlxGa(1−x)As Semiconductors in the Visible Range. Eur. Phys. J. Plus 2023, 138, 554. [Google Scholar] [CrossRef]
- Segovia-Chaves, F.; Vinck-Posada, H.; Dakhlaoui, H. Optimization of the Quality Factor and Sensitivity of One-dimensional Photonic Crystal Methane Sensor with Cryptophane A Cavity. Optik 2023, 289, 171249. [Google Scholar] [CrossRef]
- Al-Sheikhi, A. The Luminescence Characteristics of Pb1−xEuxSe Photonic QDs Prepared via Polymethoxy-ethylhexyloxy-phenylenevinylene Assisted Polyol Technique for Laser Applications. Optik 2021, 232, 166567. [Google Scholar] [CrossRef]
- Zaky, Z.A.; Al-Dossari, M.; Matar, Z.S.; Aly, A.H. Effect of Geometrical and Physical Properties of Cantor Structure for Gas Sensing Applications. Synth. Met. 2022, 291, 117167. [Google Scholar] [CrossRef]
- Paul, B.K.; Ahmed, K.; Dhasarathan, V.; Al-Zahrani, F.A.; Aktar, M.N.; Uddin, M.S.; Aly, A.H. Investigation of Gas Sensor Based on Differential Optical Absorption Spectroscopy Using Photonic Crystal Fiber. Alex. Eng. J. 2020, 59, 5045. [Google Scholar] [CrossRef]
- Awasthi, S.K.; Panda, R.; Shiveshwari, L. Multichannel Tunable Filter Properties of 1D Magnetized Ternary Plasma Photonic Crystal in the Presence of Evanescent Wave. Phys. Plasmas 2017, 24, 072111. [Google Scholar] [CrossRef]
- Qi, L.; Zhang, X. Band Gap Characteristics of Plasma with Periodically Varying External Magnetic Field. Solid State Commun. 2011, 151, 1838. [Google Scholar] [CrossRef]
- King, T.-C.; Yang, C.-C.; Hsieh, P.-H.; Chang, T.-W. Analysis of Tunable Photonic Band Structure in an Extrinsic Plasma Photonic Crystal. Phys. E Low-Dimens. Syst. Nanostruct. 2015, 67, 7. [Google Scholar] [CrossRef]
- Chang, T.-W.; Chien, J.-R.C.; Wu, C.-J. Magnetic-field Tunable Multichannel Filter in a Plasma Photonic Crystal at Microwave Frequencies. Appl. Opt. 2016, 55, 943. [Google Scholar] [CrossRef]
- Segovia-Chavesa, F.; Vinck-Posadaa, H. Transmittance Spectrum in a Regular One-dimensional Photonic Crystal and with the Insertion of a YBa2Cu3O7−x Defective Layer. Optik 2019, 181, 416. [Google Scholar] [CrossRef]
- Belhadj, W.; Al-Ahmadi, A.N. Tunable Narrowband Terahertz Multichannel Filter Based on One-dimensional Graphene-Dielectric Photonic Crystal. Opt. Quantum Electron. 2021, 53, 27. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dakhlaoui, H.; Belhadj, W.; Elabidi, H.; Al-Shameri, N.S.; Ungan, F.; Wong, B.M. Harnessing a Dielectric/Plasma Photonic Crystal as an Optical Microwave Filter: Role of Defect Layers and External Magnetic Fields. Materials 2024, 17, 559. https://doi.org/10.3390/ma17030559
Dakhlaoui H, Belhadj W, Elabidi H, Al-Shameri NS, Ungan F, Wong BM. Harnessing a Dielectric/Plasma Photonic Crystal as an Optical Microwave Filter: Role of Defect Layers and External Magnetic Fields. Materials. 2024; 17(3):559. https://doi.org/10.3390/ma17030559
Chicago/Turabian StyleDakhlaoui, Hassen, Walid Belhadj, Haykel Elabidi, Najla S. Al-Shameri, Fatih Ungan, and Bryan M. Wong. 2024. "Harnessing a Dielectric/Plasma Photonic Crystal as an Optical Microwave Filter: Role of Defect Layers and External Magnetic Fields" Materials 17, no. 3: 559. https://doi.org/10.3390/ma17030559
APA StyleDakhlaoui, H., Belhadj, W., Elabidi, H., Al-Shameri, N. S., Ungan, F., & Wong, B. M. (2024). Harnessing a Dielectric/Plasma Photonic Crystal as an Optical Microwave Filter: Role of Defect Layers and External Magnetic Fields. Materials, 17(3), 559. https://doi.org/10.3390/ma17030559