Improvement of the Hydrogen Storage Characteristics of MgH2 with Al Nano-Catalyst Produced by the Method of Electric Explosion of Wires
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liang, G.; Schulz, R. Mechanically Alloyed Nanocrystalline Hydrogen Storage Materials. Mater. Trans. 2001, 42, 1593–1598. [Google Scholar] [CrossRef]
- Schulz, R.; Huot, J.; Liang, G.; Boily, S.; Lalande, G.; Denis, M.C.; Dodelet, J.P. Recent Developments in the Applications of Nanocrystalline Materials to Hydrogen Technologies. Mater. Sci. Eng. A 1999, 267, 240–245. [Google Scholar] [CrossRef]
- Zaluska, A.; Zaluski, L.; Ström–Olsen, J.O. Nanocrystalline Magnesium for Hydrogen Storage. J. Alloys Compd. 1999, 288, 217–225. [Google Scholar] [CrossRef]
- Suryanarayana, C. Mechanical Alloying and Milling. Prog. Mater. Sci. 2001, 46, 1–184. [Google Scholar] [CrossRef]
- Liang, G.; Huot, J.; Boily, S.; Schulz, R. Hydrogen Desorption Kinetics of a Mechanically Milled MgH2+5at.%V Nanocomposite. J. Alloys Compd. 2000, 305, 239–245. [Google Scholar] [CrossRef]
- Huot, J.; Liang, G.; Schulz, R. Mechanically Alloyed Metal Hydride Systems. Appl. Phys. A Mater. Sci. Process. 2001, 72, 187–195. [Google Scholar] [CrossRef]
- Grigorova, E.; Khristov, M.; Khrussanova, M.; Bobet, J.; Peshev, P. Effect of Additives on the Hydrogen Sorption Properties of Mechanically Alloyed Composites Based on Mg and Ni. Int. J. Hydrogen Energy 2005, 30, 1099–1105. [Google Scholar] [CrossRef]
- Oelerich, W.; Klassen, T.; Bormann, R. Metal Oxides as Catalysts for Improved Hydrogen Sorption in Nanocrystalline Mg-Based Materials. J. Alloys Compd. 2001, 315, 237–242. [Google Scholar] [CrossRef]
- Barkhordarian, G.; Klassen, T.; Bormann, R. Fast Hydrogen Sorption Kinetics of Nanocrystalline Mg Using Nb2O5 as Catalyst. Scr. Mater. 2003, 49, 213–217. [Google Scholar] [CrossRef]
- Barkhordarian, G.; Klassen, T.; Bormann, R. Effect of Nb2O5 Content on Hydrogen Reaction Kinetics of Mg. J. Alloys Compd. 2004, 364, 242–246. [Google Scholar] [CrossRef]
- Bogdanović, B.; Schwickardi, M. Ti-Doped Alkali Metal Aluminium Hydrides as Potential Novel Reversible Hydrogen Storage Materials. J. Alloys Compd. 1997, 253–254, 1–9. [Google Scholar] [CrossRef]
- Gutfleisch, O.; Dal Toè, S.; Herrich, M.; Handstein, A.; Pratt, A. Hydrogen Sorption Properties of Mg–1 Wt.% Ni–0.2 Wt.% Pd Prepared by Reactive Milling. J. Alloys Compd. 2005, 404–406, 413–416. [Google Scholar] [CrossRef]
- Hanada, N.; Ichikawa, T.; Hino, S.; Fujii, H. Remarkable Improvement of Hydrogen Sorption Kinetics in Magnesium Catalyzed with Nb2O5. J. Alloys Compd. 2006, 420, 46–49. [Google Scholar] [CrossRef]
- Reilly, J.J.; Wiswall, R.H. Reaction of Hydrogen with Alloys of Magnesium and Nickel and the Formation of Mg2NiH4. Inorg. Chem. 1968, 7, 2254–2256. [Google Scholar] [CrossRef]
- Dornheim, M.; Eigen, N.; Barkhordarian, G.; Klassen, T.; Bormann, R. Tailoring Hydrogen Storage Materials Towards Application. Adv. Eng. Mater. 2006, 8, 377–385. [Google Scholar] [CrossRef]
- Vajo, J.J.; Skeith, S.L.; Mertens, F. Reversible Storage of Hydrogen in Destabilized LiBH4. J. Phys. Chem. B 2005, 109, 3719–3722. [Google Scholar] [CrossRef] [PubMed]
- Barkhordarian, G.; Klassen, T.; Dornheim, M.; Bormann, R. Unexpected Kinetic Effect of MgB2 in Reactive Hydride Composites Containing Complex Borohydrides. J. Alloys Compd. 2007, 440, L18–L21. [Google Scholar] [CrossRef]
- Stepanov, A.; Ivanov, E.; Konstanchuk, I.; Boldyrev, V. Hydriding Properties of Mechanical Alloys Mg–Ni. J. Less Common Met. 1987, 131, 89–97. [Google Scholar] [CrossRef]
- Gutfleisch, O.; Schlorke-de Boer, N.; Ismail, N.; Herrich, M.; Walton, A.; Speight, J.; Harris, I.R.; Pratt, A.S.; Züttel, A. Hydrogenation Properties of Nanocrystalline Mg- and Mg2Ni-Based Compounds Modified with Platinum Group Metals (PGMs). J. Alloys Compd. 2003, 356–357, 598–602. [Google Scholar] [CrossRef]
- Ivanov, E.; Konstanchuk, I.; Stepanov, A.; Boldyrev, V. Magnesium Mechanical Alloys for Hydrogen Storage. J. Less Common Met. 1987, 131, 25–29. [Google Scholar] [CrossRef]
- Terzieva, M.; Khrussanova, M.; Peshev, P. Hydriding and Dehydriding Characteristics of Mg-LaNi5 Composite Materials Prepared by Mechanical Alloying. J. Alloys Compd. 1998, 267, 235–239. [Google Scholar] [CrossRef]
- Liang, G. Synthesis and Hydrogen Storage Properties of Mg-Based Alloys. J. Alloys Compd. 2004, 370, 123–128. [Google Scholar] [CrossRef]
- Gross, K.J.; Chartouni, D.; Leroy, E.; Züttel, A.; Schlapbach, L. Mechanically Milled Mg Composites for Hydrogen Storage: The Relationship between Morphology and Kinetics. J. Alloys Compd. 1998, 269, 259–270. [Google Scholar] [CrossRef]
- Konstanchuk, I.G.; Ivanov, E.Y.; Pezat, M.; Darriet, B.; Boldyrev, V.V.; Hagenmuller, P. The Hydriding Properties of a Mechanical Alloy with Composition Mg-25%Fe. J. Less Common Met. 1987, 131, 181–189. [Google Scholar] [CrossRef]
- Liang, G.; Huot, J.; Boily, S.; Van Neste, A.; Schulz, R. Catalytic Effect of Transition Metals on Hydrogen Sorption in Nanocrystalline Ball Milled MgH2–Tm (Tm = Ti, V, Mn, Fe and Ni) Systems. J. Alloys Compd. 1999, 292, 247–252. [Google Scholar] [CrossRef]
- Huot, J.; Pelletier, J.F.; Liang, G.; Sutton, M.; Schulz, R. Structure of Nanocomposite Metal Hydrides. J. Alloys Compd. 2002, 330–332, 727–731. [Google Scholar] [CrossRef]
- Jain, I.P.; Lal, C.; Jain, A. Hydrogen Storage in Mg: A Most Promising Material. Int. J. Hydrogen Energy 2010, 35, 5133–5144. [Google Scholar] [CrossRef]
- Rivard, E.; Trudeau, M.; Zaghib, K. Hydrogen Storage for Mobility: A Review. Materials 2019, 12, 1973. [Google Scholar] [CrossRef]
- Lyu, J.; Elman, R.R.; Svyatkin, L.A.; Kudiiarov, V.N. Theoretical and Experimental Research of Hydrogen Solid Solution in Mg and Mg-Al System. Materials 2022, 15, 1667. [Google Scholar] [CrossRef]
- Lyu, J.; Kudiiarov, V.; Lider, A. Experimentally Observed Nucleation and Growth Behavior of Mg/MgH2 during De/Hydrogenation of MgH2/Mg: A Review. Materials 2022, 15, 8004. [Google Scholar] [CrossRef]
- Lyu, J.; Elman, R.; Svyatkin, L.; Kudiiarov, V. Theoretical and Experimental Studies of Al-Impurity Effect on the Hydrogenation Behavior of Mg. Materials 2022, 15, 8126. [Google Scholar] [CrossRef] [PubMed]
- Ruse, E.; Buzaglo, M.; Pevzner, S.; Pri-Bar, I.; Skripnyuk, V.M.; Rabkin, E.; Regev, O. Tuning Mg Hydriding Kinetics with Nanocarbons. J. Alloys Compd. 2017, 725, 616–622. [Google Scholar] [CrossRef]
- Ruse, E.; Pevzner, S.; Pri Bar, I.; Nadiv, R.; Skripnyuk, V.M.; Rabkin, E.; Regev, O. Hydrogen Storage and Spillover Kinetics in Carbon Nanotube-Mg Composites. Int. J. Hydrogen Energy 2016, 41, 2814–2819. [Google Scholar] [CrossRef]
- Popilevsky, L.; Skripnyuk, V.M.; Beregovsky, M.; Sezen, M.; Amouyal, Y.; Rabkin, E. Hydrogen Storage and Thermal Transport Properties of Pelletized Porous Mg-2 Wt.% Multiwall Carbon Nanotubes and Mg-2 Wt.% Graphite Composites. Int. J. Hydrogen Energy 2016, 41, 14461–14474. [Google Scholar] [CrossRef]
- Dornheim, M.; Doppiu, S.; Barkhordarian, G.; Boesenberg, U.; Klassen, T.; Gutfleisch, O.; Bormann, R. Hydrogen Storage in Magnesium-Based Hydrides and Hydride Composites. Scr. Mater. 2007, 56, 841–846. [Google Scholar] [CrossRef]
- Milošević, S.; Kurko, S.; Pasquini, L.; Matović, L.; Vujasin, R.; Novaković, N.; Novaković, J.G. Fast Hydrogen Sorption from MgH2–VO2(B) Composite Materials. J. Power Sources 2016, 307, 481–488. [Google Scholar] [CrossRef]
- Polanski, M.; Bystrzycki, J. Comparative studies of the influence of different nano-sized metal oxides on the hydrogen sorption properties of magnesium hydride. J. Alloys Compd. 2009, 486, 697–701. [Google Scholar] [CrossRef]
- Shao, H.; Asano, K.; Enoki, H.; Akiba, E. Preparation and hydrogen storage properties of nanostructured Mg–Ni BCC alloys. J. Alloys Compd. 2009, 477, 301–306. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Z.; Zhang, J.; Tao, B.; Liu, Q. Recent Advances in Hydrogen Storage of MgH2 Doped by Ni. IOP Conf. Ser. Earth Environ. Sci. 2019, 267, 022042. [Google Scholar] [CrossRef]
- Shao, H.; Xu, H.; Wang, Y.; Li, X. Synthesis and Hydrogen Storage Behavior of Mg–Co–H System at Nanometer Scale. J. Solid State Chem. 2004, 177, 3626–3632. [Google Scholar] [CrossRef]
- Pukazhselvan, D.; Nasani, N.; Yang, T.; Bdikin, I.; Kovalevsky, A.V.; Fagg, D.P. Dehydrogenation Properties of Magnesium Hydride Loaded with Fe, Fe−C, and Fe−Mg Additives. ChemPhysChem 2016, 18, 287–291. [Google Scholar] [CrossRef]
- Zhou, C.; Zhang, J.; Bowman, R.C.; Fang, Z.Z. Roles of Ti-Based Catalysts on Magnesium Hydride and Its Hydrogen Storage Properties. Inorganics 2021, 9, 36. [Google Scholar] [CrossRef]
- Ren, C.; Fang, Z.Z.; Zhou, C.; Lu, J.; Ren, Y.; Zhang, X. Hydrogen Storage Properties of Magnesium Hydride with V-Based Additives. J. Phys. Chem. C 2014, 118, 21778–21784. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, J.; Liu, Z.; Zhu, Y.; Zhang, J.; Li, L. Magnesium Nanoparticles With Pd Decoration for Hydrogen Storage. Front. Chem. 2020, 7, 949. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, Z.; Gao, X.; Wang, Y.; Wang, F.; Zheng, S.; Guan, S.; Yan, H.; Yang, X.; Jia, W. Effect of Novel La-Based Alloy Modification on Hydrogen Storage Performance of Magnesium Hydride: First-Principles Calculation and Experimental Investigation. J. Power Sources 2022, 551, 232187. [Google Scholar] [CrossRef]
- Spassov, T.; Lyubenova, L.; Köster, U.; Baró, M.D. Mg–Ni–RE Nanocrystalline Alloys for Hydrogen Storage. Mater. Sci. Eng. A 2004, 375–377, 794–799. [Google Scholar] [CrossRef]
- Jangir, M.; Jain, A.; Yamaguchi, S.; Ichikawa, T.; Lal, C.; Jain, I.P. Catalytic Effect of TiF4 in Improving Hydrogen Storage Properties of MgH2. Int. J. Hydrogen Energy 2016, 41, 14178–14183. [Google Scholar] [CrossRef]
- Song, M.Y.; Park, H.R.; Kwak, Y.J.; Lee, S.H. Hydrogen Sorption of Pure Mg and Niobium (V) Fluoride-Added Mg Alloys Prepared by Planetary Ball Milling in Hydrogen. Korean J. Met. Mater. 2016, 54, 916–924. [Google Scholar] [CrossRef]
- Lin, H.-J.; Matsuda, J.; Li, H.-W.; Zhu, M.; Akiba, E. Enhanced Hydrogen Desorption Property of MgH2 with the Addition of Cerium Fluorides. J. Alloys Compd. 2015, 645, S392–S396. [Google Scholar] [CrossRef]
- Malka, I.E.; Czujko, T.; Bystrzycki, J. Catalytic Effect of Halide Additives Ball Milled with Magnesium Hydride. Int. J. Hydrogen Energy 2010, 35, 1706–1712. [Google Scholar] [CrossRef]
- Malka, I.E.; Pisarek, M.; Czujko, T.; Bystrzycki, J. A Study of the ZrF4, NbF5, TaF5, and TiCl3 Influences on the MgH2 Sorption Properties. Int. J. Hydrogen Energy 2011, 36, 12909–12917. [Google Scholar] [CrossRef]
- Wu, C.Z.; Wang, P.; Yao, X.; Liu, C.; Chen, D.M.; Lu, G.Q.; Cheng, H.M. Effect of Carbon/Noncarbon Addition on Hydrogen Storage Behaviors of Magnesium Hydride. J. Alloys Compd. 2006, 414, 259–264. [Google Scholar] [CrossRef]
- Rahmalina, D.; Rahman, R.A.; Ismail, I. Experimental Evaluation for the Catalytic Effect of Nickel in Micron Size on Magnesium Hydride. Wseas Trans. Appl. Theor. Mech. 2021, 16, 293–302. [Google Scholar] [CrossRef]
- Varin, R.A.; Czujko, T.; Wasmund, E.B.; Wronski, Z.S. Catalytic Effects of Various Forms of Nickel on the Synthesis Rate and Hydrogen Desorption Properties of Nanocrystalline Magnesium Hydride (MgH2) Synthesized by Controlled Reactive Mechanical Milling (CRMM). J. Alloys Compd. 2007, 432, 217–231. [Google Scholar] [CrossRef]
- Grove, H.; Løvvik, O.M.; Huang, W.; Opalka, S.M.; Heyn, R.H.; Hauback, B.C. Decomposition of Lithium Magnesium Aluminum Hydride. Int. J. Hydrogen Energy 2011, 36, 7602–7611. [Google Scholar] [CrossRef]
- Khludkov, S.S.; Prudaev, I.A.; Root, L.O.; Tolbanov, O.P.; Ivonin, I.V. Aluminum Nitride Doped with Transition Metal Group Atoms as a Material for Spintronics. Izvestiya vysshikh uchebnykh zavedenii. Fizika 2020, 63, 162–172. [Google Scholar] [CrossRef]
- Mostovshchikov, A.; Gubarev, F.; Nazarenko, O.; Pestryakov, A. Influence of Short-Pulse Microwave Radiation on Thermochemical Properties Aluminum Micropowder. Materials 2023, 16, 951. [Google Scholar] [CrossRef]
- Gu, C.; Gao, G.-H.; Yu, Y.-X. Density Functional Study of Hydrogen Adsorption at Low Temperatures. J. Chem. Phys. 2003, 119, 488–495. [Google Scholar] [CrossRef]
- Vostrikov, S.V.; Samarov, A.A.; Turovtsev, V.V.; Wasserscheid, P.; Müller, K.; Verevkin, S.P. Thermodynamic Analysis of Chemical Hydrogen Storage: Energetics of Liquid Organic Hydrogen Carrier Systems Based on Methyl-Substituted Indoles. Materials 2023, 16, 2924. [Google Scholar] [CrossRef]
- Alshahrie, A.; Arkook, B.; Al-Ghamdi, W.; Eldera, S.; Alzaidi, T.; Bamashmus, H.; Shalaan, E. Electrochemical Performance and Hydrogen Storage of Ni–Pd–P–B Glassy Alloy. Nanomaterials 2022, 12, 4310. [Google Scholar] [CrossRef]
- Kudiiarov, V.N.; Kurdyumov, N.; Elman, R.R.; Laptev, R.S.; Kruglyakov, M.A.; Ushakov, I.A.; Tereshchenko, A.V.; Lider, A.M. The Defect Structure Evolution in Magnesium Hydride/Metal-Organic Framework Structures MIL-101 (Cr) Composite at High Temperature Hydrogen Sorption-Desorption Processes. J. Alloys Compd. 2023, 966, 171534. [Google Scholar] [CrossRef]
- Kudiiarov, V.N.; Kurdyumov, N.; Elman, R.R.; Svyatkin, L.A.; Terenteva, D.V.; Semyonov, O. Microstructure and Hydrogen Storage Properties of MgH2/MIL-101(Cr) Composite. J. Alloys Compd. 2024, 976, 173093. [Google Scholar] [CrossRef]
- Cheng, H.; Song, H.; Toan, S.; Wang, B.; Gasem, K.A.M.; Fan, M.; Cheng, F. Experimental Investigation of CO2 Adsorption and Desorption on Multi-Type Amines Loaded HZSM-5 Zeolites. Chem. Eng. J. 2021, 406, 126882. [Google Scholar] [CrossRef]
- Fedorov, A.V.; Kukushkin, R.G.; Yeletsky, P.M.; Bulavchenko, O.A.; Chesalov, Y.A.; Yakovlev, V.A. Temperature-Programmed Reduction of Model CuO, NiO and Mixed CuO–NiO Catalysts with Hydrogen. J. Alloys Compd. 2020, 844, 156135. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kudiiarov, V.N.; Kenzhiyev, A.; Mostovshchikov, A.V. Improvement of the Hydrogen Storage Characteristics of MgH2 with Al Nano-Catalyst Produced by the Method of Electric Explosion of Wires. Materials 2024, 17, 639. https://doi.org/10.3390/ma17030639
Kudiiarov VN, Kenzhiyev A, Mostovshchikov AV. Improvement of the Hydrogen Storage Characteristics of MgH2 with Al Nano-Catalyst Produced by the Method of Electric Explosion of Wires. Materials. 2024; 17(3):639. https://doi.org/10.3390/ma17030639
Chicago/Turabian StyleKudiiarov, Viktor N., Alan Kenzhiyev, and Andrei V. Mostovshchikov. 2024. "Improvement of the Hydrogen Storage Characteristics of MgH2 with Al Nano-Catalyst Produced by the Method of Electric Explosion of Wires" Materials 17, no. 3: 639. https://doi.org/10.3390/ma17030639
APA StyleKudiiarov, V. N., Kenzhiyev, A., & Mostovshchikov, A. V. (2024). Improvement of the Hydrogen Storage Characteristics of MgH2 with Al Nano-Catalyst Produced by the Method of Electric Explosion of Wires. Materials, 17(3), 639. https://doi.org/10.3390/ma17030639