Mineral Weathering and Metal Leaching under Meteoric Conditions in F-(Ba-Pb-Zn) Mining Waste of Hammam Zriba (NE Tunisia)
Abstract
:1. Introduction
1.1. Location and Weather Conditions of the Study Area
1.2. Geological Setting
2. Materials and Methods
2.1. Sample Collection
2.2. Apparent Density
2.3. Grain Size Analysis
2.4. Mineralogical Analysis
2.5. Chemical Analysis
2.6. Leaching Test
3. Results
3.1. Physical Properties of Mining Waste
3.1.1. Particle Size Distribution
3.1.2. Apparent Density
3.2. Mineralogical Characterization
3.3. Granulochemical Characterization
3.4. Leaching Tests
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gutiérrez, M.; Mickus, K.; Camacho, L.M. Abandoned Pb-Zn mining wastes and their mobility as proxy to toxicity: A review. Sci. Total Environ. 2016, 565, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.W.; Gutiérrez, M.; Gouzie, D.; McAliley, L.R. State of remediation and metal toxicity in the Tri-State Mining District, USA. Chemosphere 2016, 144, 1132–1141. [Google Scholar] [CrossRef] [PubMed]
- Fields, S. The earth’s open wounds: Abandoned and orphaned mines. Environ. Health Perspect. 2003, 111, 154–161. [Google Scholar] [CrossRef]
- Hudson-Edwards, K.A.; Jamieson, H.E.; Lottermoser, B.G. Mine wastes: Past, present, future. Elements 2011, 7, 375–380. [Google Scholar] [CrossRef]
- Eyankware, M.O.; Obasi, P.N. A holistic review of heavy metals in water and soil in Ebonyi SE, Nigeria; with emphasis on its effects on human, plants and aquatic organisms. World News Nat. Sci. 2021, 38, 1–19. [Google Scholar]
- Sainfeld, P. Les gîtes plombozincifères de Tunisie. Tunis Ann. Mines Géol. 1952, 9, 1–285. [Google Scholar]
- Thibieroz, J. Etude Géologique et Minière de Deux Gisements Stratiformes dans le Cadre de la Province Fluorée Tunisienne; L’association des Concentrations Fluorées. Paris VI. 1974. Available online: https://www.sudoc.fr/042064589 (accessed on 12 November 2023).
- Bouhlel, S. Distribution du Baryum et du Strontium dans les Gisements de la Province Fluorée Tunisienne: Application aux Gîtes de Hammam Jedidi et Hammam Zriba-Jebel Guebli. Ph.D. Thesis, Université Paul Sabatier, Toulouse, France, 1982. [Google Scholar]
- Bouhlel, S.; Fortuné, J.P.; Guilhaumou, N.; Touray, J.C. Les minéralisations stratiformes à F-Ba de Hammam Zriba, Jebel Guébli (Tunisie nord orientale): L’apport des études d’inclusions fluides à la modélisation génétique. Miner. Depos. 1988, 23, 166–173. [Google Scholar] [CrossRef]
- Souissi, F.; Dandurand, J.L.; Fortuné, J.P. Thermal and chemical evolution of fluids during fluorite deposition in the Zaghouan province, north-eastern Tunisia. Miner. Depos. 1997, 32, 257–270. [Google Scholar] [CrossRef]
- Tlil, H.; Souissi, R.; Souissi, F.; Lattanzi, P.; Podda, F.; Concas, S.; Ardau, C.; Cidu, R. Environmental mineralogy and geochemistry of Pb–Zn mine wastes, Northern Tunisia. Rend. Lincei 2017, 28, 133–141. [Google Scholar] [CrossRef]
- Ghorbel, M.; Souissi, F.; Souissi, R.; Munoz, M. Geochemical and mineralogical evolution in Pb-Zn mine tailings of Jebel Ressas (North-Eastern Tunisia). In Proceedings of the International Congress of Solid Waste Management & Sustainable Development, Granada, Spain, 2–4 June 2008. [Google Scholar]
- Abid, M.G.B. Contamination Métallique Issue des Déchets de L’ancien Site Minier de Jebel Ressas: Modélisation des Mécanismes de Transfert et Conception de Carte d’aléa Post-Mine dans un Contexte Carbonaté et Sous un Climat Semi-Aride. Evaluation du Risque Pour la San. Ph.D. Thesis, Université de Toulouse III—Paul Sabatier, Toulouse, France, 2012. [Google Scholar]
- Ghorbel, M.; Munoz, M.; Courjault-Radé, P.; Destrigneville, C.; de Parseval, P.; Souissi, R.; Souissi, F.; Ben Mammou, A.; Abdeljaouad, S. Health risk assessment for human exposure by direct ingestion of Pb, Cd, Zn bearing dust in the former miners’ village of Jebel Ressas (NE Tunisia). Eur. J. Mineral. 2010, 22, 639–649. [Google Scholar] [CrossRef]
- Souissi, R.; Souissi, F.; Chakroun, H.K.; Bouchardon, J.L. Mineralogical and Geochemical Characterization of Mine Tailings and Pb, Zn, and Cd Mobility in a Carbonate Setting (Northern Tunisia) Mineralogische und geochemische Eigenschaften von Aufbereitungsabgängen—Umweltauswirkung der Mobilität von Pb, Zn und Cd. Mine Water Environ. 2013, 32, 16–27. [Google Scholar] [CrossRef]
- Souissi, R.; Souissi, F.; Ghorbel, M.; Munoz, M.; Courjault-Radé, P. Mobility of Pb, Zn and Cd in a soil developed on a carbonated bedrock in a semi-arid climate and contaminated by Pb–Zn tailing, Jebel Ressas (NE Tunisia). Environ. Earth Sci. 2015, 73, 3501–3512. [Google Scholar] [CrossRef]
- Souissi, R.; Souissi, F.; Chakroun, H.K.; Bouchardon, J.L. Mineralogical and geochemical characterization of mine tailings and the effect of Pb, Zn, Cd and Cd mobility on the quality of soils and stream sediments in northern Tunisia. In Proceedings of the International Congress of Solid Waste Management and Sustainable Development, Hammamet, Tunisia, 28–29 April 2008; pp. 313–317. [Google Scholar] [CrossRef]
- Boussen, S.; Soubrand, M.; Bril, H.; Ouerfelli, K.; Abdeljaouad, S. Transfer of lead, zinc and cadmium from mine tailings to wheat (Triticum aestivum) in carbonated Mediterranean (Northern Tunisia) soils. Geoderma 2013, 192, 227–236. [Google Scholar] [CrossRef]
- Mlayah, A.; da Silva, E.F.; Rocha, F.; Hamza, C.B.; Charef, A.; Noronha, F. The Oued Mellègue: Mining activity, stream sediments and dispersion of base metals in natural environments, North-western Tunisia. J. Geochem. Explor. 2009, 102, 27–36. [Google Scholar] [CrossRef]
- Pascaud, G.; Boussen, S.; Soubrand, M.; Joussein, E.; Fondaneche, P.; Abdeljaouad, S.; Bril, H. Particulate transport and risk assessment of Cd, Pb and Zn in a Wadi contaminated by runoff from mining wastes in a carbonated semi-arid context. J. Geochem. Explor. 2015, 152, 27–36. [Google Scholar] [CrossRef]
- Navarro, M.C.; Pérez-Sirvent, C.; Martínez-Sánchez, M.J.; Vidal, J.; Tovar, P.J.; Bech, J. Abandoned mine sites as a source of contamination by heavy metals: A case study in a semi-arid zone. J. Geochem. Explor. 2008, 96, 183–193. [Google Scholar] [CrossRef]
- Öhlander, B.; Chatwin, T.; Alakangas, L. Management of Sulfide-Bearing Waste, a Challenge for the Mining Industry. Minerals 2012, 2, 1–10. [Google Scholar] [CrossRef]
- Tremblay, G.A.; Hogan, C.M. MEND Manuel Volume 3–Prediction; MEND Report, 5; Natural Resources Canada: Ottawa, ON, Canada, 2000. [Google Scholar]
- Nordstrom, D.K. Mine waters: Acidic to circumneutral. Elements 2011, 7, 393–398. [Google Scholar] [CrossRef]
- Doufexi, M.; Gamvroula, D.E.; Alexakis, D.E. Elements’ Content in Stream Sediment and Wildfire Ash of Suburban Areas in West Attica (Greece). Water 2022, 14, 310. [Google Scholar] [CrossRef]
- Alexakis, D.E.; Bathrellos, G.D.; Skilodimou, H.D.; Gamvroula, D.E. Spatial Distribution and Evaluation of Arsenic and Zinc Content in the Soil of a Karst Landscape. Sustainability 2021, 13, 6976. [Google Scholar] [CrossRef]
- Bu, K.; Freile, D.; Cizdziel, J.V.; Richards, J.; Sidhu, V.; Duzgoren-Aydin, N.S. Geochemical characteristics of soils on ellis island, New York-New Jersey, sixty years after the abandonment of the hospital complex. Geosciences 2018, 8, 13. [Google Scholar] [CrossRef]
- Lottermoser, B.G. Tailings. In Mine Wastes: Characterization, Treatment and Environmental Impacts, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 205–241. [Google Scholar] [CrossRef]
- Holmström, H.; Ljungberg, J.; Ekström, M.; Öhlander, B. Secondary copper enrichment in tailings at the Laver mine, northern Sweden. Environ. Geol. 1999, 38, 327–342. [Google Scholar] [CrossRef]
- Ljungberg, J.; Öhlander, B. The geochemical dynamics of oxidising mine tailings at Laver, Northern Sweden. J. Geochem. Explor. 2001, 74, 57–72. [Google Scholar] [CrossRef]
- Dold, B.; Fontbote, L. Element cycling and secondary mineralogy in prophyry copper tailings as a function of a climate, primary mineralogy, and mineral processing. J. Geochem. Explor. 2001, 74, 3–55. [Google Scholar] [CrossRef]
- McGregor, R.G.; Blowes, D.W.; Jambor, J.L.; Robertson, W.D. Mobilization and attenuation of heavy metals within a nickel mine tailings impoundment near Sudbury, Ontario, Canada. Environ. Geol. 1998, 36, 305–319. [Google Scholar] [CrossRef]
- Souissi, F.; Souissi, R.; Dandur, J.-L. The Genesis of the Mississippi Valley-Type Fluorite Ore at Jebel Stah (Zaghouan District, North-Eastern Tunisia) Constrained by Thermal and Chemical Properties of Fluids and REE and Sr Isotope Geochemistry. In Geochemistry-Earth’s System Processes; InTech: London, UK, 2012; pp. 249–290. [Google Scholar]
- INM. Institut National de la Météorologie. 2009. Available online: http://www.meteo.tn/default.html (accessed on 16 May 2009).
- Bouhlel, S.; Magné, J. Mise en évidence de la transgression campanienne et de l’âge post-campanien de la minéralisation fluo-barytique de Hammam Zriba-Jebel Guebli. C. R. Acad. Sci. 1982, 294, 333–338. [Google Scholar] [CrossRef]
- Melki, F.; Zargouni, F. Tectonique cassante post jurassique de la mine de Hammam Zriba (Tunisie nord-orientale); incidences sur la karstification et les concentrations de fluorine, barytine et celestine, d’environnement carbonate. Bull. Soc. Géol. Fr. 1991, 162, 851–858. [Google Scholar] [CrossRef]
- Bonnefous, J. Contribution à l’étude Stratigraphique du Jurassique de Tunisie (Tunisie Septentrionale et Centrale, Sahel, Zone des Chotts). Thèse Sci., Université de Paris VI., Paris, France, 1972. [Google Scholar]
- Biely, A.; Memmi, L.; Salaj, J. Le Crétacé Inférieur de la région d’Enfidaville. Découverte d’Aptien condensé. Livr. Jub. M. Solignac Ann. Min. Geol. 1973, 26, 169–178. [Google Scholar]
- Jemmali, N.; Carranza, E.J.M.; Zemmel, B. Isotope geochemistry of Mississippi Valley Type stratabound F-Ba-(Pb-Zn) ores of Hammam Zriba (Province of Zaghouan, NE Tunisia). Chem. Erde 2017, 77, 477–486. [Google Scholar] [CrossRef]
- Ghassen, D. Etude géochimique et Minéralurgique des Rejets Miniers du Nord de la Tunisie en vue de leur Valorisation: Application aux Rejets de Flottation de Hammam Zriba (Fluorine-Barytine), Jebel Ressas et Jebel Ghozlane (Sulfures et Oxydes de Pb-Zn). Ph.D. Thesis, Université de Tunis El Manar, Rommana, Tunisia, 2019. [Google Scholar]
- Mezned, N. Modélisation spectrale pour la cartographie des rejets miniers dans le nord de la Tunisie a partir des données de télédétection. 2010. Available online: https://scholar.google.fr/scholar?hl=fr&as_sdt=0%2C5&q=Modélisation+spectrale+pour+la+cartopgraphie+des+rejets+miniers+dans+le+nord+de+la+tunisie&btnG= (accessed on 14 January 2019).
- Scrivener, K.L.; Füllmann, T.; Gallucci, E.; Walenta, G.; Bermejo, E. Quantitative study of Portland cement hydration by X-ray diffraction/Rietveld analysis and independent methods. Cem. Concr. Res. 2004, 34, 1541–1547. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, D.; Bu, H.; Deng, L.; Liu, H.; Yuan, P.; Du, P.; Song, H. XRD-based quantitative analysis of clay minerals using reference intensity ratios, mineral intensity factors, Rietveld, and full pattern summation methods: A critical review. Solid Earth Sci. 2018, 3, 16–29. [Google Scholar] [CrossRef]
- AFNOR NF X31-210; Déchets—Essai de Lixiviation. AFNOR: Paris, France, 1992; p. 13.
- Witt, K.J. Sustainable Improvement in Safety of Tailings Facilities TAILSAFE A European Research and Technological Development Project Report Tailings Management Facilities-Risks and Reliability Tailings Management Facilities-Risks and Reliability Report of Workpack. In TAILSAFE: A European Research and Technological Development Project. 2004. Available online: https://www.tailsafe.com/pdf-documents/TAILSAFE_Design_and_Authorisation.pdf (accessed on 1 May 2022).
- Bouhlel, S. Composition chimique, fréquence et distribution des minéraux de la série barytine-célestite dans les gisements de fluorine de Hammam Jédidi et Hammam Zriba-Jébel Guébli (Tunisie nord-orientale). Bull. Minéralogie 1985, 108, 403–420. [Google Scholar] [CrossRef]
- CCME, Canadian Council of Ministers of the Environment. Conseil Canadien des Ministres de l’Environnement. Quality Guidelines Summary Table. 2018. Available online: https://www.ccme.ca/en/resources/canadian_environmental_quality_guidelines/ (accessed on 1 May 2022).
- WHO. Guidelines for Drinking-Water Quality; WHO: Geneva, Switzerland, 2011. [Google Scholar]
- Lottermoser, B.G. Introduction to Mine Wastes. In Mine Wastes: Characterization, Treatment and Environmental Impacts, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1–41. [Google Scholar] [CrossRef]
- Plante, B.; Bussière, B.; Benzaazoua, M. Static tests response on 5 Canadian hard rock mine tailings with low net acid-generating potentials. J. Geochem. Explor. 2012, 114, 57–69. [Google Scholar] [CrossRef]
- Blowes, D.W.; Reardon, E.J.; Jambor, J.L.; Cherry, J.A. The formation and potential importance of cemented layers in inactive sulfide mine tailings. Geochim. Cosmochim. Acta 1991, 55, 965–978. [Google Scholar] [CrossRef]
- Ignatiadis, I.; Akbar, A.A. Outils et Méthodes Physiques et Chimiques pour la Détection des Pollutions dans les Sols: Dosage par Fluorescence X et par Colorimétrie des Polluants Métalliques et Comparaison des Méthodes d’analyse de Laboratoire; BRGM: Paris, France, 1998. [Google Scholar]
- Wenzel, W.W.; Blum, W.E.H. Fluorine speciation and mobility in F-contaminated soils. Soil Sci. 1992, 153, 357–364. [Google Scholar] [CrossRef]
- Zhang, R.; Hu, S.; Zhang, X. Experimental Study of Dissolution Rates of Fluorite in HCl–H2O Solutions. Aquat. Geochem. 2006, 12, 123–159. [Google Scholar] [CrossRef]
- Khelfaoui, M.; Medjram, M.S.; Kabir, A.; Zouied, D.; Mehri, K.; Chikha, O.; Trabelsi, M.A. Chemical and mineralogical characterization of weathering products in mine wastes, soil, and sediment from the abandoned Pb/Zn mine in Skikda, Algeria. Environ. Earth Sci. 2020, 79, 293. [Google Scholar] [CrossRef]
- Perlatti, F.; Martins, E.P.; de Oliveira, D.P.; Ruiz, F.; Asensio, V.; Rezende, C.F.; Otero, X.L.; Ferreira, T.O. Copper release from waste rocks in an abandoned mine (NE, Brazil) and its impacts on ecosystem environmental quality. Chemosphere 2021, 262, 127843. [Google Scholar] [CrossRef]
- Cappuyns, V.; Alian, V.; Vassilieva, E.; Swennen, R. pH dependent leaching behavior of Zn, Cd, Pb, Cu and As from mining wastes and slags: Kinetics and mineralogical control. Waste Biomass Valorization 2014, 5, 355–368. [Google Scholar] [CrossRef]
- Król, A.; Mizerna, K.; Bożym, M. An assessment of pH-dependent release and mobility of heavy metals from metallurgical slag. J. Hazard. Mater. 2020, 384, 121502. [Google Scholar] [CrossRef]
- Basta, N.T.; McGowen, S.L. Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil. Environ. Pollut. 2004, 127, 73–82. [Google Scholar] [CrossRef]
Fraction (µm) | Proportion by Dump (%) | ||
---|---|---|---|
ZI | ZII | ZIII | |
500–2000 (Coarse sand) | 2.3 | 2.1 | 4.0 |
100–500 (Medium sand) | 34.4 | 51.2 | 55.9 |
0–100 (Silt, fine sand) | 63.3 | 46.7 | 40.1 |
Total | 100 | 100 | 100 |
Mineral | Quartz SiO2 | Calcite CaCO3 | Fluorite CaF2 | Hemi. (*) | Sphalerite Zns | Celestine SrSO4 | Barite BaSO4 | Pyrite FeS2 | Anglesite PbSO4 | Galena PbS | HZMW |
---|---|---|---|---|---|---|---|---|---|---|---|
Density | 2.65 | 2.71 | 3.18 | 3.47 | 3.9 | 3.97 | 4.5 | 5.02 | 6.38 | 7.58 | 3.11/3.18 |
Sample | CaO | SiO2 | Al2O3 | Fe2O3 | P2O5 | MnO | MgO | PbO | SO3 | BaO | SrO | ZnO | LOI | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LOD (mg/kg) | 50 | - | 500 | 35 | 250 | 60 | 3500 | 5 | 70 | 35 | 3 | 8 | - | |
ZI | Whole | 15.52 | 18.94 | 1.50 | 0.48 | 2.59 | 0.26 | <LOD | 0.26 | 25.29 | 12.85 | 6.17 | 1.64 | 9.18 |
+100 µm | 18.36 | 20.65 | 1.32 | 0.44 | 2.32 | 0.23 | <LOD | 0.19 | 22.80 | 11.32 | 5.44 | 1.73 | 11.35 | |
−100 µm | 12.95 | 17.39 | 1.63 | 0.51 | 2.90 | 0.27 | <LOD | 0.33 | 27.88 | 14.97 | 6.93 | 1.56 | 7.33 | |
ZII | Whole | 16.60 | 19.53 | 1.84 | 0.67 | 3.20 | 0.28 | <LOD | 0.26 | 27.69 | 13.56 | 6.28 | 1.71 | 9.54 |
+100 µm | 17.95 | 19.21 | 1.40 | 0.43 | 2.62 | 0.27 | <LOD | 0.41 | 24.55 | 12.80 | 6.16 | 2.13 | 9.00 | |
−100 µm | 15.31 | 23.15 | 1.48 | 0.76 | 2.78 | 0.26 | <LOD | 0.33 | 25.37 | 12.19 | 5.98 | 2.20 | 10.13 | |
ZIII | Whole | 11.25 | 21.08 | 1.77 | 0.49 | 3.57 | 0.27 | 1.31 | 0.56 | 30.17 | 15.26 | 7.43 | 2.22 | 7.04 |
+100 µm | 13.91 | 24.03 | 1.83 | 0.52 | 3.41 | 0.28 | <LOD | 0.41 | 28.38 | 13.67 | 6.62 | 2.27 | 8.91 | |
−100 µm | 20.44 | 19.57 | 1.45 | 0.41 | 2.53 | 0.26 | <LOD | 0.34 | 22.92 | 11.85 | 5.70 | 2.23 | 11.32 |
Elements | LOD (mg/kg) | ZI | ZII | ZIII | Limit Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Whole | +100 µm | −100 µm | Whole | +100 µm | −100 µm | Whole | +100 µm | −100 µm | CCME [47] WHO [48] | ||
As | 3 | 217.29 | 117.03 | 305.04 | 227.44 | 197.58 | 337.18 | 192.11 | 261.37 | 357.72 | 6 |
Ba | 35 | 115,075.3 | 101,382.1 | 134,096.7 | 114,634.5 | 109,150.0 | 136,637.9 | 106,153 | 118,075.7 | 131,246.0 | 210 |
Cd | 8 | 25.34 | 29.40 | 25.78 | 27.14 | 37.75 | 33.58 | <LOD | 28.78 | <LOD | 0.6 |
Co | 20 | 255.77 | 156.29 | <LOD | 147.25 | <LOD | 184.45 | 144.44 | 204.05 | 178.56 | 50 |
Cr | 20 | 603.13 | 586.56 | 667.87 | 588.52 | 548.74 | 618.42 | 451.04 | 521.31 | 551.60 | 26 |
Cu | 12 | 128.64 | 141.57 | 142.45 | 149.65 | <LOD | 181.43 | 119.76 | <LOD | 165.08 | 16 |
Mo | 3 | 14.58 | 13.88 | 12.34 | 14.32 | 14.98 | 18.27 | 16.26 | 20.33 | 19.20 | - |
Nb | 3 | 17.30 | 14.28 | 14.24 | 16.90 | 18.14 | 17.67 | 16.99 | 20.39 | 21.70 | - |
Ni | 25 | 347.76 | 311.54 | 321.90 | 381.59 | 427.17 | 382.73 | 417.97 | 436.54 | 400.24 | 40 |
Pb | 5 | 2435.64 | 1735.77 | 3104.24 | 3825.16 | 3061.27 | 5159.71 | 3126.34 | 3756.08 | 4687.71 | 31 |
Sr | 3 | 52,175.54 | 45,986.01 | 58,594.55 | 52,127.67 | 50,589.49 | 62,791.94 | 48,204.28 | 53,176.03 | 59,482.48 | 240 |
V | 10 | <LOD | <LOD | <LOD | 618.69 | 789.73 | 928.54 | 901.04 | 1065.39 | 1127.89 | - |
Zn | 8 | 13,138.86 | 13,884.64 | 12,569.27 | 17,142.92 | 17,714.76 | 17,828.89 | 17,891.32 | 17,458.82 | 18,974.48 | 120 |
Dump | mo (g) | ms (g) | pHi | pHf | vo (l) | v (l) | C (g L−1) | fo (g kg−1) |
---|---|---|---|---|---|---|---|---|
ZI | 100 | 97.27 | 9.45 | 8.17 | 2.7·10−3 | 1 | 100 | 0.001 |
ZII | 100 | 98.49 | 9.35 | 8.25 | 1.5·10−3 | 1 | 100 | 0.001 |
ZIII | 50 | 48.75 | 8.8 | 8.3 | 1.2·10−3 | 0.5 | 100 | 0.001 |
Elements | Whole Sample (mg kg−1) | Leachate (µg L−1) | Residues * (mg kg−1) | Limit Value [47,48] | |||
---|---|---|---|---|---|---|---|
Value | LOD | Value | LOD | Water (µg L−1) | Sediment (mg kg−1) | ||
Al | 7674.06 | 500 | 96.28 | 1.77 | 200 | ||
As | 192.11 | 3 | - | 0.59 | 81.44 | 10 | 6 |
Ba | 106,153 | 35 | 159.29 | 0.06 | 112,670.67 | 700 | 210 |
Cd | <LOD | 8 | 8.85 | 0.003 | <LOD | 3 | 0.6 |
Cr | 451.04 | 20 | 12.74 | 0.11 | 3541.84 | 50 | 120 |
Cu | 119.76 | 12 | 22.39 | 0.21 | 75.52 | 2000 | 16 |
F | - | - | 3300 | - | - | 1500 | |
Fe | 2871.50 | 35 | - | 8.26 | 941.86 | 200 | |
Mn | 1975.54 | 60 | 15.59 | 0.09 | 1355.69 | 100 | - |
Ni | 417.97 | 25 | 4.4 | 0.16 | <LOD | 70 | 16 |
Pb | 3126.34 | 5 | 23.91 | 0.02 | - | 10 | 31 |
Sr | 48,204.28 | 3 | 10,047.14 | 0.03 | 29,261.94 | 1500 | 240 |
Zn | 17,891.32 | 8 | 751.26 | 0.26 | 8351.73 | 9030.83 | 8351.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaba, O.B.; Souissi, F.; Keita, D.; Filippov, L.O.; Conté, M.S.M.; Kanari, N. Mineral Weathering and Metal Leaching under Meteoric Conditions in F-(Ba-Pb-Zn) Mining Waste of Hammam Zriba (NE Tunisia). Materials 2023, 16, 7443. https://doi.org/10.3390/ma16237443
Kaba OB, Souissi F, Keita D, Filippov LO, Conté MSM, Kanari N. Mineral Weathering and Metal Leaching under Meteoric Conditions in F-(Ba-Pb-Zn) Mining Waste of Hammam Zriba (NE Tunisia). Materials. 2023; 16(23):7443. https://doi.org/10.3390/ma16237443
Chicago/Turabian StyleKaba, Oumar Barou, Fouad Souissi, Daouda Keita, Lev O. Filippov, Mohamed Samuel Moriah Conté, and Ndue Kanari. 2023. "Mineral Weathering and Metal Leaching under Meteoric Conditions in F-(Ba-Pb-Zn) Mining Waste of Hammam Zriba (NE Tunisia)" Materials 16, no. 23: 7443. https://doi.org/10.3390/ma16237443
APA StyleKaba, O. B., Souissi, F., Keita, D., Filippov, L. O., Conté, M. S. M., & Kanari, N. (2023). Mineral Weathering and Metal Leaching under Meteoric Conditions in F-(Ba-Pb-Zn) Mining Waste of Hammam Zriba (NE Tunisia). Materials, 16(23), 7443. https://doi.org/10.3390/ma16237443