Investigation of the Multi-Scale Deterioration Mechanisms of Anhydrite Rock Exposed to Freeze–Thaw Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Test Scheme and Main Instruments
2.3. Macro-Scale Tests
2.3.1. Mass Variation Tests
2.3.2. Mechanical Resistance Tests
2.4. Micro-Scale Tests
3. Experimental Results and Analysis
3.1. Macroscopic Damage Evolution
3.1.1. Mass Variation
3.1.2. Deterioration of Mechanical Characteristics
3.1.3. Macroscopic Damage Processes
3.1.4. Cracking Modes under Different Stress Conditions
3.2. Microscopic Damage Analysis
3.2.1. NMR Test Results
3.2.2. SEM Test Results
4. Multi-Scale Deterioration Mechanism of Anhydrite Rock under Freeze–Thaw Environment
4.1. Correlation Analysis between Pore Structure and Macroscopic Mechanical Parameters
4.2. Deterioration Mechanism Analysis
5. Conclusions
- (1)
- The macroscopic test results indicate that the mass variation increases exponentially with the increase in freeze–thaw cycles, while the mechanical strength, elastic modulus, and cohesion decrease exponentially. Meanwhile, as the freeze–thaw cycles increase, the frost resistance coefficient decreases, while the damage variable increases.
- (2)
- The porosity of anhydrite rock increases with the freeze–thaw cycles, and the mean porosity increases by 66.27% after 120 cycles. With the increase in freeze–thaw cycles, the area of micropores (r ≤ 0.1 μm) and PT-Ipore throat (0–0.1 μm) decreases exponentially. In comparison, the area of mesopores (0.1 μm < r < 1 μm), macropores (r ≥ 1 μm), and PT-II pore throat (0.1–4 μm) increases exponentially. Under the freeze–thaw treatment, the roughness of the sample gradually increases, and for the samples treated with 120 cycles, there is a significant honeycomb and pitted surface phenomenon.
- (3)
- The correlation analysis between microstructure and macroscopic mechanical parameters shows that macropores play the most significant role in the mechanical parameters evolution of anhydrite rock under the freeze–thaw environment.
- (4)
- It is found that the mechanical loss rate of anhydrite rock is higher than that of rocks with a similar porosity under the same freeze–thaw conditions. Finally, it is revealed that the water–rock expansion and water dissolution effects play a crucial role in the multi-scale damage of anhydrite rock under a freeze–thaw environment.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, C.; Jin, X.G.; Hou, C.; He, J. Mechanical and acoustic emission characteristics of anhydrite rock under freeze-thaw cycles. J. Mt. Sci. 2023, 20, 227–241. [Google Scholar] [CrossRef]
- Mardoukhi, V.T. Effects of Test Temperature and Low Temperature Thermal Cycling on the Dynamic Tensile Strength of Granitic Rocks. Rock Mech. Rock Eng. 2021, 54, 443–454. [Google Scholar] [CrossRef]
- Li, Z.; Suo, J.; Fan, J.; Fourmeau, M.; Jiang, D.; Nelias, D. Damage Evolution of Rock Salt under Multilevel Amplitude Creep–Fatigue Loading with Acoustic Emission Monitoring. Int. J. Rock Mech. Min. 2023, 164, 105346. [Google Scholar] [CrossRef]
- Freire-Lista, D.M.; Fort, R.; Varas-Muriel, M.J. Freeze-thaw fracturing in building granites. Cold Reg. Sci. Technol. 2015, 113, 40–51. [Google Scholar] [CrossRef]
- Khoshbakht, E.B.; Vakili, A.H.; Farhadi, M.S.; Salimi, M. Reducing the negative impact of freezing and thawing cycles on marl by means of the electrokinetical injection of calcium chloride. Cold Reg. Sci. Technol. 2019, 157, 196–205. [Google Scholar] [CrossRef]
- Scrivano, S.; Gaggero, L. An experimental investigation into the salt-weathering susceptibility of building limestones. Rock Mech. Rock Eng. 2020, 53, 5329–5343. [Google Scholar] [CrossRef]
- Jamshidi, A. An investigation on ultrasonic wave velocity of laminated sandstone under freeze-thaw and salt crystallization cycles: Insights from anisotropy effects. J. Build. Eng. 2023, 71, 106461. [Google Scholar] [CrossRef]
- Codeglia, D.; Dixon, N.; Fowmes, G.J.; Marcato, G. Analysis of acoustic emission patterns for monitoring of rock slope deformation mechanisms. Eng. Geol. 2017, 219, 21–31. [Google Scholar] [CrossRef]
- Mousavi, S.Z.S.; Tavakoli, H.; Moarefvand, P.; Rezaei, M. Micro-structural, petro-graphical and mechanical studies of schist rocks under the freezing-thawing cycles. Cold Reg. Sci. Technol. 2020, 174, 103039. [Google Scholar] [CrossRef]
- Çelik, M.Y.; Korucu, M.R. The effect of freeze-thaw cycles performed with salt solutions (NaCl and Na2SO4) on carbonate building stones. Bull. Eng. Geol. Environ. 2023, 82, 64. [Google Scholar] [CrossRef]
- Karaca, Z.; Hamdi Deliormanli, A.; Elci, H.; Pamukcu, C. Effect of freeze–thaw process on the abrasion loss value of stones. Int. J. Rock Mech. Min. 2010, 47, 1207–1211. [Google Scholar] [CrossRef]
- Shi, Z.; Li, J.; Wang, J.; Chen, J.; Lin, H.; Cao, P. Experimental and numerical study on fracture characteristics and constitutive model of sandstone under freeze-thaw-fatigue. Int. J. Fatigue 2023, 166, 107236. [Google Scholar] [CrossRef]
- Deprez, M.; De Kock, T.; De Schutter, G.; Cnudde, V. A review on freeze-thaw action and weathering of rocks. Earth-Sci. Rev. 2020, 203, 103143. [Google Scholar] [CrossRef]
- Gokce, M.V.; Ince, I.; Fener, M.; Taskiran, T.; Kayabali, K. The effects of freeze-thaw (F-T) cycles on the Godene travertine used in historical structures in Konya (Turkey). Cold Reg. Sci. Technol. 2016, 127, 65–75. [Google Scholar] [CrossRef]
- Al-Omari, A.; Beck, K.; Brunetaud, X.; Al-Mukhtar, M. Critical degree of saturation: A control factor of freeze-thaw damage of porous limestones at Castle of Chambord, France. Eng. Geol. 2015, 185, 71–80. [Google Scholar] [CrossRef]
- De Kock, T.; Boone, M.A.; De Schryver, T.; Van Stappen, J.; Derluyn, H.; Masschaele, B.; De Schutter, G.; Cnudde, V. A pore-scale study of fracture dynamics in rock using X-ray micro-CT under ambient freeze-haw cycling. Environ. Sci. Technol. 2015, 49, 2867–2874. [Google Scholar] [CrossRef] [PubMed]
- Noor-E-Khuda, S.; Albermani, F.; Veidt, M. Flexural strength of weathered granites: Influence of freeze and thaw cycles. Constr. Build. Mater. 2017, 156, 891–901. [Google Scholar] [CrossRef]
- Khanlari, G.; Abdilor, Y. Influence of wet-dry, freeze-thaw, and heat-cool cycles on the physical and mechanical properties of upper red sandstones in Central Iran. Bull. Eng. Geol. Environ. 2015, 74, 1287–1300. [Google Scholar] [CrossRef]
- Momeni, A.; Abdilor, Y.; Khanlari, G.R.; Heidari, M.; Sepahi, A.A. The effect of freeze-thaw cycles on physical and mechanical properties of granitoid hard rocks. Bull. Eng. Geol. Environ. 2016, 75, 1649–1656. [Google Scholar] [CrossRef]
- Rusin, Z.; Świercz, P. Frost resistance of rock materials. Constr. Build. Mater. 2017, 148, 704–714. [Google Scholar] [CrossRef]
- İnce, İ.; Fener, M. A prediction model for uniaxial compressive strength of deteriorated pyroclastic rocks due to freeze-thaw cycle. J. Afr. Earth Sci. 2016, 120, 134–140. [Google Scholar] [CrossRef]
- Seyed Mousavi, S.Z.; Tavakoli, H.; Moarefvand, P.; Rezaei, M. Assessing the effect of freezing-thawing cycles on the results of the triaxial compressive strength test for calc-schist rock. Int. J. Rock Mech. Min. 2019, 123, 104090. [Google Scholar] [CrossRef]
- Zhang, H.M.; Meng, X.Z.; Yang, G.S. A study on mechanical properties and damage model of rock subjected to freeze-thaw cycles and confining pressure. Cold Reg. Sci. Technol. 2020, 174, 103056. [Google Scholar] [CrossRef]
- Wang, L.P.; Li, N.; Qi, J.L.; Tian, Y.Z.; Xu, S.H. A study on the physical index change and triaxial compression test of intact hard rock subjected to freeze-thaw cycles. Cold Reg. Sci. Technol. 2019, 160, 39–47. [Google Scholar]
- Fang, X.Y.; Xu, J.Y.; Wang, P.X. Compressive failure characteristics of yellow sandstone subjected to the coupling effects of chemical corrosion and repeated freezing and thawing. Eng. Geol. 2018, 233, 160–171. [Google Scholar] [CrossRef]
- Mu, J.Q.; Pei, X.J.; Huang, R.Q.; Rengers, N.; Zou, X.Q. Degradation characteristics of shear strength of joints in three rock types due to cyclic freezing and thawing. Cold Reg. Sci. Technol. 2017, 138, 91–97. [Google Scholar] [CrossRef]
- Luo, Y.; Qu, D.X.; Wang, G.; Li, X.P.; Zhang, G. Degradation model of the dynamic mechanical properties and damage failure law of sandstone under freeze-thaw action. Soil Dyn. Earthq. Eng. 2020, 132, 106094. [Google Scholar] [CrossRef]
- Martínez-Martínez, J.; Benavente, D.; Gomez-Heras, M.; Marco-Castaño, L.; García-Del-Cura, M.Á. Non-linear decay of building stones during freeze–thaw weathering processes. Constr. Build. Mater. 2013, 38, 443–454. [Google Scholar] [CrossRef]
- Deprez, M.; De Kock, T.; De Schutter, G.; Cnudde, V. The role of ink-bottle pores in freeze-thaw damage of oolithic limestone. Constr. Build. Mater. 2020, 246, 118515. [Google Scholar] [CrossRef]
- Gao, F.; Xiong, X.; Zhou, K.P.; Li, J.L.; Shi, W.C. Strength deterioration model of saturated sandstone under freeze-thaw cycles. Rock Soil Mech. 2019, 40, 926–932. [Google Scholar]
- Liu, T.Y.; Zhang, C.Y.; Li, J.T.; Zhou, K.P.; Cao, P. Detecting freeze-thaw damage degradation of sandstone with initial damage using NMR technology. Bull. Eng. Geol. Environ. 2021, 80, 4529–4545. [Google Scholar] [CrossRef]
- Tian, H.H.; Wei, C.F.; Tan, L. Effect of freezing-thawing cycles on the microstructure of soils: A two-dimensional NMR relaxation analysis. Cold Reg. Sci. Technol. 2019, 158, 106–116. [Google Scholar] [CrossRef]
- Ke, B.; Zhou, K.P.; Deng, H.W.; Feng, B. NMR Pore Structure and Dynamic Characteristics of Sandstone Caused by Ambient Freeze-Thaw Action. Shock. Vib. 2017, 2017, 9728630. [Google Scholar] [CrossRef]
- Park, J.; Hyun, C.; Park, H. Changes in microstructure and physical properties of rocks caused by artificial freeze–thaw action. Bull. Eng. Geol. Environ. 2015, 74, 555–565. [Google Scholar] [CrossRef]
- Aloğlu, S.S.; Yavuz, A.B. Predicting the abrasion resistance value before and after deterioration by freeze–thaw of limestones based on the initial material properties: A case study from Manisa area western Türkiye. Environ. Earth Sci. 2023, 82, 353. [Google Scholar] [CrossRef]
- Jamshidi, A.; Nikudel, M.R.; Khamehchiyan, M. Predicting the long-term durability of building stones against freeze–thaw using a decay function model. Cold Reg. Sci. Technol. 2013, 92, 29–36. [Google Scholar] [CrossRef]
- Sadeghiamirshahidi, M.; Vitton, S.J. Analysis of drying and saturating natural gypsum samples for mechanical testing. J. Rock Mech. Geotech. 2019, 11, 219–227. [Google Scholar] [CrossRef]
- DL/T 5368-007; Code for Rock Tests of Hydroelectric and Water Conservancy Engineering. China Electric Power Press: Beijing, China, 2017. (In Chinese)
- Tan, X.; Chen, W.; Yang, J.; Cao, J. Laboratory investigations on the mechanical properties degradation of granite under freeze-thaw cycles. Cold Reg. Sci. Technol. 2011, 68, 130–138. [Google Scholar] [CrossRef]
- Lemaitre, J. A Course on Damage Mechanics; Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar]
- Ban, Y.X. Study on the Characteristics of Acoustic Emission and the Mechanism of Crack Evolution of Shale Rock. Ph.D. Thesis, Chongqing University, Chongqing, China, 2021. [Google Scholar]
- Cui, K.; Liu, G.S.; Wu, G.P.; Zhu, P. Study on the characteristics and mechanisms of freeze-thaw damage of rock carrier of Helankou rock paintings under different conditions. Chin. J. Rock Mech. Eng. 2019, 38, 1797–1808. (In Chinese) [Google Scholar]
- Yang, C.; Zhou, K.P.; Xiong, X.; Deng, H.W.; Pan, Z. Experimental investigation on rock mechanical properties and infrared radiation characteristics with freeze-thaw cycle treatment. Cold Reg. Sci. Technol. 2021, 183, 103232. [Google Scholar] [CrossRef]
- Deng, H.; Yu, S.; Deng, J.; Ke, B.; Bin, F. Experimental Investigation on Energy Mechanism of Freezing-Thawing Treated Sandstone under Uniaxial Static Compression. KSCE J. Civ. Eng. 2019, 23, 2074–2082. [Google Scholar] [CrossRef]
- Zhou, X.P.; Li, C.Q.; Zhou, L.S. The effect of microstructural evolution on the permeability of sandstone under freeze-thaw cycles. Cold Reg. Sci. Technol. 2020, 177, 103119. [Google Scholar] [CrossRef]
Sample Number | Uniaxial Compression Strength (MPa) | Elastic Modulus (GPa) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 30 | 60 | 90 | 120 | 0 | 30 | 60 | 90 | 120 | |
1 | 113.68 | 104.96 | 85.21 | 69.23 | 61.80 | 23.58 | 18.30 | 13.54 | 11.77 | 9.07 |
2 | 121.67 | 99.72 | 82.99 | 67.30 | 59.99 | 23.27 | 16.06 | 13.82 | 9.98 | 9.55 |
3 | 117.28 | 98.99 | 88.41 | 70.88 | 66.74 | 23.57 | 18.34 | 15.83 | 11.58 | 9.43 |
Mean value | 117.54 | 101.22 | 85.53 | 69.14 | 62.84 | 23.47 | 17.57 | 14.40 | 11.11 | 9.35 |
Sample Number | Triaxial Compression Strength (MPa) | Elastic Modulus (GPa) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 30 | 60 | 90 | 120 | 0 | 30 | 60 | 90 | 120 | |
1 | 151.33 | 133.84 | 119.88 | 103.63 | 97.17 | 21.77 | 18.69 | 14.49 | 11.53 | 10.04 |
2 | 156.76 | 125.22 | 109.99 | 109.44 | 100.86 | 20.28 | 16.06 | 10.64 | 10.06 | 10.08 |
Mean value | 154.05 | 129.53 | 114.94 | 106.54 | 99.02 | 21.03 | 17.38 | 12.57 | 10.80 | 10.06 |
Sample Number | Triaxial Compression Strength (MPa) | Elastic Modulus (GPa) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 30 | 60 | 90 | 120 | 0 | 30 | 60 | 90 | 120 | |
1 | 168.02 | 144.91 | 139.49 | 125.37 | 115.50 | 22.38 | 18.50 | 13.82 | 12.58 | 11.84 |
2 | 161.55 | 149.71 | 133.03 | 127.11 | 121.02 | 20.20 | 16.68 | 14.61 | 11.95 | 12.05 |
Mean value | 164.79 | 147.31 | 136.26 | 126.24 | 118.26 | 21.29 | 17.59 | 14.22 | 12.27 | 11.95 |
Freeze–Thaw Cycles | |||||
---|---|---|---|---|---|
0 | 30 | 60 | 90 | 120 | |
c (MPa) | 19.55 | 17.01 | 12.98 | 10.3 | 9.29 |
φ (°) | 54.03 | 53.11 | 55.61 | 57.15 | 56.98 |
Sample Number | Tension Strength (MPa) | Elastic Modulus (GPa) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 30 | 60 | 90 | 120 | 0 | 30 | 60 | 90 | 120 | |
1 | 8.57 | 6.02 | 5.02 | 4.20 | 3.86 | 2.92 | 1.78 | 1.70 | 1.05 | 0.71 |
2 | 7.91 | 6.26 | 5.48 | 4.57 | 3.43 | 2.65 | 2.00 | 1.80 | 1.27 | 0.64 |
3 | 7.61 | 6.69 | 5.04 | 4.41 | 4.08 | 2.73 | 2.08 | 1.90 | 1.13 | 0.85 |
Mean value | 8.03 | 6.32 | 5.18 | 4.39 | 3.79 | 2.77 | 1.95 | 1.80 | 1.15 | 0.73 |
Number | Proportion of Pore Area (%) | |||
---|---|---|---|---|
30 | 60 | 90 | 120 | |
B | 59.46 | 66.38 | 78.91 | 81.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, X.; Hou, C.; He, J.; Dias, D. Investigation of the Multi-Scale Deterioration Mechanisms of Anhydrite Rock Exposed to Freeze–Thaw Environment. Materials 2024, 17, 726. https://doi.org/10.3390/ma17030726
Jin X, Hou C, He J, Dias D. Investigation of the Multi-Scale Deterioration Mechanisms of Anhydrite Rock Exposed to Freeze–Thaw Environment. Materials. 2024; 17(3):726. https://doi.org/10.3390/ma17030726
Chicago/Turabian StyleJin, Xiaoguang, Chao Hou, Jie He, and Daniel Dias. 2024. "Investigation of the Multi-Scale Deterioration Mechanisms of Anhydrite Rock Exposed to Freeze–Thaw Environment" Materials 17, no. 3: 726. https://doi.org/10.3390/ma17030726
APA StyleJin, X., Hou, C., He, J., & Dias, D. (2024). Investigation of the Multi-Scale Deterioration Mechanisms of Anhydrite Rock Exposed to Freeze–Thaw Environment. Materials, 17(3), 726. https://doi.org/10.3390/ma17030726