Preparation of GO/Diatomite/Polyacrylonitrile Functional Separator and Its Application in Li–S Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Purification of Diatomite
2.2. Preparation of GO/DE Composite Material
2.3. Preparation of GO/DE/PAN Functional Separator
2.4. Synthesis of S/C Cathode Materials
2.5. Material Characterization
2.6. Electrochemical Measurements
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy transformation. Energy Strateg. Rev. 2019, 24, 38–50. [Google Scholar] [CrossRef]
- Razmjoo, A.; Gandomi, A.H.; Pazhoohesh, M.; Mirjalili, S.; Rezaei, M. The key role of clean energy and technology in smart cities development. Energy Strateg. Rev. 2022, 44, 100943. [Google Scholar] [CrossRef]
- Jin, T.; Kim, J. A comparative study of energy and carbon efficiency for emerging countries using panel stochastic frontier analysis. Sci. Rep. 2019, 9, 6647. [Google Scholar] [CrossRef]
- Bhatt, U.; Carreras, B.; Barredo, J.; Newman, D.; Collet, P.; Gomila, D. The Potential Impact of Climate Change on the Efficiency and Reliability of Solar, Hydro, and Wind Energy Sources. Land 2022, 11, 1275. [Google Scholar] [CrossRef]
- Gernaat, D.; de Boer, H.; Daioglou, V.; Yalew, S.; Müller, C.; van Vuuren, D. Climate change impacts on renewable energy supply. Nat. Clim. Change 2021, 11, 362. [Google Scholar] [CrossRef]
- Olabi, A.; Abbas, Q.; Shinde, P.; Abdelkareem, M. Rechargeable batteries: Technological advancement, challenges, current and emerging applications. Energy 2023, 266, 126408. [Google Scholar] [CrossRef]
- Wulandari, T.; Fawcett, D.; Majumder, S.; Poinern, G. Lithium-based batteries, history, current status, challenges, and future perspectives. Battery Energy 2023, 2, 20230030. [Google Scholar] [CrossRef]
- Bruce, P.; Freunberger, S.; Hardwick, L.; Tarascon, J. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29. [Google Scholar] [CrossRef]
- Manthiram, A.; Fu, Y.; Chung, S.; Zu, C.; Su, Y. Rechargeable lithium–sulfur batteries. Chem. Rev. 2014, 114, 11751–11787. [Google Scholar] [CrossRef]
- Raza, H.; Bai, S.; Cheng, J.; Majumder, S.; Zhu, H.; Liu, Q.; Zheng, G.; Li, X.F.; Chen, G. Li-S Batteries: Challenges, Achievements and Opportunities. Electrochem. Energy Rev. 2023, 6, 29. [Google Scholar] [CrossRef]
- Zhou, H.; Fear, C.; Parekh, M.; Gray, F.; Fleetwood, J.; Adams, T.; Tomar, V.; Pol, V.; Mukherjee, P. The Role of Separator Thermal Stability in Safety Characteristics of Lithium-ion Batteries. J. Electrochem. Soc. 2022, 169, 90521. [Google Scholar] [CrossRef]
- Batyrgali, N.; Yerkinbekova, Y.; Tolganbek, N.; Kalybekkyzy, S.; Bakenov, Z.; Mentbayeva, A. Recent Advances on Modification of Separator for Li/S Batteries. ACS Appl. Energy Mater. 2023, 6, 588–604. [Google Scholar] [CrossRef]
- Hossain, M.; Chowdhury, M.; Hossain, N.; Islam, M.; Mobarak, M. Advances of lithium-ion batteries anode materials—A review. Chem. Eng. J. Adv. 2023, 16, 100569. [Google Scholar] [CrossRef]
- Choi, J.; Kim, S.; Kim, D. Enhancement of thermal stability and cycling performance in lithium-ion cells through the use of ceramic-coated separators. J. Power Sources 2010, 195, 6192–6196. [Google Scholar] [CrossRef]
- Jeong, Y.; Kim, J.; Nam, S.; Park, C.; Yang, J. Rational Design of Nanostructured Functional Interlayer/Separator for Advanced Li-S Batteries. Adv. Funct. Mater. 2018, 28, 1707411. [Google Scholar] [CrossRef]
- Kiai, M. Liquid Graphene Oxide Binder and Modified Glass Fiber Separator for Lithium Sulfur Battery with Highly Improved Cycling Performance. ChemRxiv 2021. [Google Scholar] [CrossRef]
- Kim, A.; Dash, J.; Patel, R. Recent Development in Novel Lithium-Sulfur Nanofiber Separators: A Review of the Latest Fabrication and Performance Optimizations. Membranes 2023, 13, 183. [Google Scholar] [CrossRef] [PubMed]
- Yanilmaz, M.; Lu, Y.; Dirican, M.; Fu, K.; Zhang, X. Nanoparticle-on-nanofiber hybrid membrane separators for lithium-ion batteries via combining electrospraying and electrospinning techniques. J. Membr. Sci. 2014, 456, 57–65. [Google Scholar] [CrossRef]
- Son, D.; Lim, W.; Lee, J. A short review of the recent developments in functional separators for lithium-sulfur batteries. Korean J. Chem. Eng. 2023, 40, 473–487. [Google Scholar] [CrossRef]
- Srikhaow, A.; Mensing, J.; Lohitkarn, J.; Sriprachuabwong, C.; Poochai, C.; Choominjak, Y.; Wisitsoraat, A.; Lomas, T.; Tuantranont, A. Improved Performance of Lithium-Sulfur Batteries Using Nitrogen-Doped Reduced Graphene Oxide-Coated Separators with Optimized Nitrogen Content. Energ. Fuel 2022, 36, 13902–13910. [Google Scholar] [CrossRef]
- Liang, X.; Kwok, C.; Lodi-Marzano, F.; Pang, Q.; Cuisinier, M.; Huang, H.; Hart, C.; Houtarde, D.; Kaup, K.; Sommer, H. Tuning Transition Metal Oxide-Sulfur Interactions for Long Life Lithium Sulfur Batteries: The “Goldilocks” Principle. Adv. Energy Mater. 2019, 6, 1501636. [Google Scholar] [CrossRef]
- Mathivanan, T.; Panjulingam, N.; Dolui, S.; Lakshmipathi, S.; Banerjee, S.; Selvan, R. Enhancement of electrochemical performances of Li-S batteries using PPESK and Nelumbo nucifera derived porous carbon modified separator. Mater. Lett. 2022, 315, 131935. [Google Scholar] [CrossRef]
- Kim, J.; Shin, D.; Kim, K.; Oh, J.; Kim, J.; Kang, S.; Lee, M.; Lee, Y. Graphene Oxide Induced Surface Modification for Functional Separators in Lithium Secondary Batteries. Sci. Rep. 2019, 9, 2464. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kang, S.; Park, Y.; Choi, J.; Jin, H.; Shin, D.; Lee, M.; Lee, Y. Multifunctional separators for lithium secondary batteries via in-situ surface modification of hydrophobic separator using aqueous binders. Surf. Interfaces 2023, 38, 102828. [Google Scholar] [CrossRef]
- Freitag, A.; Langklotz, U.; Rost, A.; Stamm, M.; Ionov, L. Ionically conductive polymer/ceramic separator for lithium-sulfur batteries. Energy Storage Mater. 2017, 9, 105–111. [Google Scholar] [CrossRef]
- Ponnada, S.; Kiai, M.; Gorle, D.; Rajagopal, S.; Andra, S.; Nowduri, A.; Muniasamy, K. Insight into Lithium-Sulfur Batteries with Novel Modified Separators: Recent Progress and Perspectives. Energ. Fuel 2021, 35, 11089–11117. [Google Scholar] [CrossRef]
- Bongu, C.; Mussa, Y.; Aleid, S.; Arsalan, M.; Alsharaeh, E. SnO2/h-BN nanocomposite modified separator as a high-efficiency polysulfide trap in lithium–sulfur batteries. Energy Adv. 2023, 2, 1926–1934. [Google Scholar] [CrossRef]
- Garbayo, I.; Santiago, A.; Judez, X.; de Buruaga, A.; Castillo, J.; Muñoz-Márquez, M. Alumina Nanofilms as Active Barriers for Polysulfides in High-Performance All-Solid-State Lithium–Sulfur Batteries. ACS Appl. Energy Mater. 2021, 4, 2463–2470. [Google Scholar] [CrossRef]
- Ji, S.; Kim, S.; Choi, S.; Byun, J.; Kim, D.; Lee, H.; Choi, H.; Song, W.; Myung, S.; Suk, J. Yttria-Stabilized Zirconia Nanoparticles-Carbon Nanotube Composite as a Polysulfide-Capturing Lithium-Sulfur Battery Separator. ACS Appl. Energy Mater. 2022, 5, 12196–12205. [Google Scholar] [CrossRef]
- Kim, C.; Saroha, R.; Cho, J. N-Doped Graphene Nanofibers with Porous Channel Comprising FexSy Nanocrystals and Intertwined N-Doped CNTs as Efficient Interlayers for Li-S Batteries. Int. J. Energ. Res. 2023, 2023, 3610577. [Google Scholar] [CrossRef]
- Han, P.; Chung, S.; Manthiram, A. Thin-Layered Molybdenum Disulfide Nanoparticles as an Effective Polysulfide Mediator in Lithium-Sulfur Batteries. ACS Appl. Mater. Interfaces 2018, 10, 23122–23130. [Google Scholar] [CrossRef]
- Marconcini, P.; Macucci, M. The k• p method and its application to graphene, carbon nanotubes and graphene nanoribbons. The Dirac equation. Riv. Nuovo C. 2011, 34, 489–584. [Google Scholar]
- Choi, J.; Kim, E.; Park, B.; Choi, I.; Park, B.; Lee, S.; Lee, J.; Yu, S. Meringue-derived hierarchically porous carbon as an efficient polysulfide regulator for lithium-sulfur batteries. J. Ind. Eng. Chem. 2022, 115, 355–364. [Google Scholar] [CrossRef]
- Kim, S.; Ahn, M.; Park, J.; Jeoun, Y.; Yu, S.; Min, D.; Sung, Y. Enhancing the of Performance of Lithium-Sulfur Batteries through Electrochemical Impregnation of Sulfur in Hierarchical Mesoporous Carbon Nanoparticles. Chemelectrochem 2020, 7, 3653–3655. [Google Scholar] [CrossRef]
- Mustafov, S.; Sen, F.; Seydibeyoglu, M. Preparation and characterization of diatomite and hydroxyapatite reinforced porous polyurethane foam biocomposites. Sci. Rep. 2020, 10, 13308. [Google Scholar] [CrossRef] [PubMed]
- Fathy, N.; Mousa, S.; Aboelenin, R.; Sherief, M.; Abdelmoaty, A. Strengthening the surface and adsorption properties of diatomite for removal of Cr (VI) and methylene blue dye. Arab. J. Geosci. 2022, 15, 1664. [Google Scholar] [CrossRef]
- Izuagie, A.; Gitari, W.; Gumbo, J. Defluoridation of groundwater using diatomaceous earth: Optimization of adsorption conditions, kinetics and leached metals risk assessment. Desalin. Water Treat. 2016, 57, 16745–16757. [Google Scholar] [CrossRef]
- Song, X.; Zhou, J.; Fan, J.; Zhang, Q.; Wang, S. Preparation and adsorption properties of magnetic graphene oxide composites for the removal of methylene blue from water. Mater. Res. Express 2022, 9, 20002. [Google Scholar] [CrossRef]
- Song, S.; Shi, L.; Lu, S.; Pang, Y.; Wang, Y.; Zhu, M.; Ding, D.; Ding, S. A new polysulfide blocker-poly (acrylic acid) modified separator for improved performance of lithium-sulfur battery. J. Phys. Chem. 2018, 563, 277–283. [Google Scholar] [CrossRef]
- Diao, W.; Xie, D.; Li, D.; Tao, F.; Liu, C.; Sun, H.; Zhang, X.; Li, W.; Wu, X.; Zhang, J. Ion sieve membrane: Homogenizing Li+ flux and restricting polysulfides migration enables long life and highly stable Li-S battery. J. Colloid Interface Sci. 2022, 627, 730–738. [Google Scholar] [CrossRef]
- Tong, Z.; Huang, L.; Lei, W.; Zhang, H.; Zhang, S. Carbon-containing electrospun nanofibers for lithium–sulfur battery: Current status and future directions. J. Energy Chem. 2021, 54, 254–273. [Google Scholar] [CrossRef]
- Tong, Z.; Huang, L.; Lei, W.; Zhang, H.; Zhang, S. High performance lithium-sulfur batteries with a facile and effective dual functional separator. Electrochim. Acta 2016, 200, 197–203. [Google Scholar]
- Yang, Y.; Wang, W.; Li, L.; Li, L.; Zhang, J. Stable cycling of Li–S batteries by simultaneously suppressing Li-dendrite growth and polysulfide shuttling enabled by a bioinspired separator. J. Mater. Chem. A 2020, 8, 3692–3700. [Google Scholar] [CrossRef]
- Gao, H.; Ning, S.; Lin, J.; Kang, X. Molecular perturbation of 2D organic modifiers on porous carbon interlayer: Promoted redox kinetics of polysulfides in lithium-sulfur batteries. Energy Storage Mater. 2021, 40, 312–319. [Google Scholar] [CrossRef]
- Conder, J.; Forner-Cuenca, A.; Gubler, E.M.; Gubler, L.; Novák, P.; Trabesinger, S. Performance-enhancing asymmetric separator for lithium–sulfur batteries. ACS Appl. Mater. Interfaces 2016, 8, 18822–18831. [Google Scholar] [CrossRef]
- Jo, H.; Cho, Y.; Yoo, T.; Jeon, Y.; Hong, H.; Piao, Y. Polyaniline-Encapsulated Hollow Co–Fe Prussian Blue Analogue Nanocubes Modified on a Polypropylene Separator to Improve the Performance of Lithium–Sulfur Batteries. ACS Appl. Mater. Interfaces 2021, 13, 47593–47602. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhao, X.; Ma, C.; Yang, Z.; Chen, G.; Wang, L.; Yue, H.; Zhang, D.; Sun, Z. Electrospun carbon nanofibers with MnS sulfiphilic sites as efficient polysulfide barriers for high-performance wide-temperature-range Li–S batteries. J. Mater. Chem. A 2020, 8, 1212–1220. [Google Scholar] [CrossRef]
- Lei, T.; Chen, W.; Hu, Y.; Lv, W.; Lv, X.; Yan, Y.; Huang, J.; Jiao, Y.; Chu, J.; Yan, C.; et al. A nonflammable and thermotolerant separator suppresses polysulfide dissolution for safe and long-cycle lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1802441. [Google Scholar] [CrossRef]
- Zhu, H.; Sha, M.; Zhao, H.; Nie, Y.; Sun, X.; Lei, Y. Highly-rough surface carbon nanofibers film as an effective interlayer for lithium–sulfur batteries. J. Semicond. 2020, 41, 092701. [Google Scholar] [CrossRef]
- Wang, J.; Yang, G.; Chen, J.; Liu, Y.; Wang, Y.; Lao, C.; Xi, K.; Yang, D.; Harris, C.; Yan, W.; et al. Flexible and high-loading lithium–sulfur batteries enabled by integrated three-in-one fibrous membranes. Adv. Energy Mater. 2019, 9, 1902001. [Google Scholar] [CrossRef]
Specific Charge | C Rate | |||
---|---|---|---|---|
Membrane | (mAh g−1) | (C) | Cycles | Ref. |
PP/PAA | 562 | 0.5 | 600 | [39] |
PP/Nafion/Cu-MOF | 680 | 0.5 | 300 | [40] |
PP/PDA/g-CN | 764 | 0.5 | 500 | [41] |
PP/Naon/super P | 807 | 0.5 | 250 | [42] |
PP/silicone/PDA | 982 | 1 | 1000 | [43] |
PP/Co-carbon/PDDA | 872 | 2 | 1200 | [44] |
PP/PSS | 1300 | 0.05 | 30 | [45] |
PP/PANI/CFP | 723 | 1 | 100 | [46] |
MnS/CNF | 714 | 0.5 | 200 | [47] |
PAN@APP | 634 | 1 | 400 | [48] |
N-CNFs | 986 | 0.2 | 200 | [49] |
S-CNTs/CoNCNFs/PVDF | 933 | 0.2 | 400 | [50] |
GO/DE/PAN | 964.7 | 0.2 | 100 | this paper |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Xiao, W.; Wu, X.; Zha, Y.; Liu, S. Preparation of GO/Diatomite/Polyacrylonitrile Functional Separator and Its Application in Li–S Batteries. Materials 2024, 17, 789. https://doi.org/10.3390/ma17040789
Yang J, Xiao W, Wu X, Zha Y, Liu S. Preparation of GO/Diatomite/Polyacrylonitrile Functional Separator and Its Application in Li–S Batteries. Materials. 2024; 17(4):789. https://doi.org/10.3390/ma17040789
Chicago/Turabian StyleYang, Jing, Wenjie Xiao, Xiaoyu Wu, Yitao Zha, and Sainan Liu. 2024. "Preparation of GO/Diatomite/Polyacrylonitrile Functional Separator and Its Application in Li–S Batteries" Materials 17, no. 4: 789. https://doi.org/10.3390/ma17040789
APA StyleYang, J., Xiao, W., Wu, X., Zha, Y., & Liu, S. (2024). Preparation of GO/Diatomite/Polyacrylonitrile Functional Separator and Its Application in Li–S Batteries. Materials, 17(4), 789. https://doi.org/10.3390/ma17040789