Microstructure and Friction Properties of AlCrTiVNbx High-Entropy Alloys via Annealing Manufactured by Vacuum Arc Melting
Abstract
:1. Introduction
2. Experimental Methods
3. Results and Discussion
3.1. Microstructural Investigations
3.2. The Hardness of the Alloy
3.3. Friction and Wear Property
3.4. Morphlology and Wear Mechanism of Wear Scars
4. Conclusions
- (1)
- AlCrTiVNbx (x = 0.3, 0.4, 0.5) HEAs have a BCC single-phase structure when it comes to casting, and the alloys undergo amplitude modulation decomposition after annealing treatments at 1000 °C for 2 h. They form a similar network structure, of which Nb0.3 has a BCC and HCP duplex structure, and Nb0.4 and Nb0.5 have a BCC, HCP and FCC three-phase structure.
- (2)
- The hardness of the HEAs after the annealing treatment is greatly increased compared to that in the casting state, and the increase is more obvious with the increase in Nb content, among which the alloy hardness of Nb0.5 is the most obvious, increasing from 543 HV in the casting state to 725 HV. The reason for the increase in hardness is the increase in Nb content, the higher content of the HCP phase and BCC phase precipitated in the alloy and the combined effects of amplitude modulation decomposition and precipitation strengthening.
- (3)
- The friction and wear properties of HEAs after the annealing treatment are significantly improved, and the annealed Nb0.5 sample has excellent wear resistance. It has an average friction coefficient of 0.154, and the wear rate is 2.117 × 10−5 mm3/(N·m). This is because the FCC phase and HCP phase produced by amplitude modulation decomposition after the annealing treatment play a role in precipitation strengthening, and the FCC phase has good plasticity and plays a certain role in self-lubrication.
- (4)
- From the analyses of the post-wear SEM images and EDS results, it can be seen that the wear mechanism of the alloys in the annealed and as-cast states during the frictional wear process is the coexistence of abrasive wear, adhesive wear and oxidative wear, out of which the oxidative wear of the as-cast Nb0.5 is the most severe.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 2004, 375–377, 213–218. [Google Scholar] [CrossRef]
- Otto, F.; Dlouhý, A.; Somsen, C.; Bei, H.; Eggeler, G.; George, E.P. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 2013, 61, 5743–5755. [Google Scholar] [CrossRef]
- George, E.P.; Raabe, D.; Ritchie, R.O. High-entropy alloys. Nat. Rev. Mater. 2019, 4, 515–534. [Google Scholar] [CrossRef]
- Mousavi, S.E.; He, A.Q.; Palimi, M.; Chen, D.L.; Li, D.Y. Influences of alloying elements on microstructure and tribological properties of a medium-weight high-entropy alloy. Wear 2023, 524–525, 204856. [Google Scholar] [CrossRef]
- Miracle, D.B.; Senkov, O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511. [Google Scholar] [CrossRef]
- Peng, Z.; Sun, J.; Luan, H.W.; Chen, N.; Yao, K.F. Effect of Mo on the high temperature oxidation behavior of Al19Fe20-xCo20-xNi41Mo2x high entropy alloys. Intermetallics 2023, 155, 107845. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, R.; Xiao, B.; Zhang, Z.; Li, S.; Qiao, J.; Bai, S.; Zhang, Y.; Liaw, P.K. A review on the dynamic-mechanical behaviors of high-entropy alloys. Prog. Mater. Sci. 2023, 135, 101090. [Google Scholar] [CrossRef]
- Alvi, S.; Akhtar, F. High temperature tribology of CuMoTaWV high entropy alloy. Wear 2019, 426, 412–419. [Google Scholar] [CrossRef]
- Günen, A. Tribocorrosion behavior of boronized Co1.19Cr1.86Fe1.30Mn1.39Ni1.05Al0.17B0.04 high entropy alloy. Surf. Coat. Technol. 2021, 421, 127426. [Google Scholar] [CrossRef]
- Wolff-Goodrich, S.; Haas, S.; Glatzel, U.; Liebscher, C.H. Towards superior high temperature properties in low density ferritic AlCrFeNiTi compositionally complex alloys. Acta Mater. 2021, 216, 117113. [Google Scholar] [CrossRef]
- Löbel, M.; Lindner, T.; Lampke, T. High-temperature wear behaviour of AlCoCrFeNiTi0.5 coatings produced by HVOF. Surf. Coat. Technol. 2020, 403, 126379. [Google Scholar] [CrossRef]
- Kumar, D. Recent advances in tribology of high entropy alloys: A critical review. Prog. Mater. Sci. 2023, 136, 101106. [Google Scholar] [CrossRef]
- Nagarjuna, C.; Dewangan, S.K.; Lee, H.; Lee, K.; Ahn, B. Exploring the mechanical and tribological properties of AlCrFeNiTi high-entropy alloy fabricated by mechanical alloying and spark plasma sintering. Vacuum 2023, 218, 112611. [Google Scholar] [CrossRef]
- Samoilova, O.; Shaburova, N.; Ostovari Moghaddam, A.; Trofimov, E. Al0.25CoCrFeNiSi0.6 high entropy alloy with high hardness and improved wear resistance. Mater. Lett. 2022, 328, 133190. [Google Scholar] [CrossRef]
- Peng, Z.; Li, B.W.; Luo, Z.B.; Chen, X.F.; Tang, Y.; Yang, G.; Gong, P.A. Lightweight AlCrTiV0.5Cux High-Entropy Alloy with Excellent Corrosion Resistance. Materials 2023, 16, 2922. [Google Scholar] [CrossRef]
- Tikar, A.; Padwal, S.; Chen, S.-H.; Harimkar, S.P. Analyzing the Phase Evolution, Microstructure and Wear Response of Spark Plasma Sintered Al0.5CoCrFeNi2 High Entropy Superalloy. Adv. Eng. Mater. 2023, 25, 2201523. [Google Scholar] [CrossRef]
- Ragunath, S.; Radhika, N.; Aravind Krishna, S.; Jeyaprakash, N. Enhancing microstructural, mechanical and tribological behaviour of AlSiBeTiV high entropy alloy reinforced SS410 through friction stir processing. Tribol. Int. 2023, 188, 108840. [Google Scholar] [CrossRef]
- Kasar, A.K.; Scalaro, K.; Menezes, P.L. Tribological Properties of High-Entropy Alloys under Dry Conditions for a Wide Temperature Range—A Review. Materials 2021, 14, 5814. [Google Scholar] [CrossRef] [PubMed]
- Menghani, J.; Vyas, A.; Patel, P.; Natu, H.; More, S. Wear, erosion and corrosion behavior of laser cladded high entropy alloy coatings—A review. Mater. Today Proc. 2021, 38, 2824–2829. [Google Scholar] [CrossRef]
- Erdoğan, A.; Gök, M.S.; Zeytin, S. Analysis of the high-temperature dry sliding behavior of CoCrFeNiTi0.5Alx high-entropy alloys. Friction 2020, 8, 198–207. [Google Scholar] [CrossRef]
- Chen, L.J.; Bobzin, K.; Zhou, Z.; Zhao, L.D.; Öte, M.; Königstein, T.; Tan, Z.; He, D.Y. Wear behavior of HVOF-sprayed Al0.6TiCrFeCoNi high entropy alloy coatings at different temperatures. Surf. Coat. Technol. 2019, 358, 215–222. [Google Scholar] [CrossRef]
- Ersun, H.B.; Doleker, K.M. The influence of Al addition and aluminizing process on oxidation performance of arc melted CoCrFeNi alloy. Vacuum 2022, 196, 110749. [Google Scholar] [CrossRef]
- Joseph, J.; Haghdadi, N.; Shamlaye, K.; Hodgson, P.; Barnett, M.; Fabijanic, D. The sliding wear behaviour of CoCrFeMnNi and AlxCoCrFeNi high entropy alloys at elevated temperatures. Wear 2018, 428–429, 32. [Google Scholar] [CrossRef]
- Yakın, A.; Şimşek, T.; Avar, B.; Chattopadhyay, A.K.; Özcan, S.; Şimşek, T. The effect of Cr and Nb addition on the structural, morphological, and magnetic properties of the mechanically alloyed high entropy FeCoNi alloys. Appl. Phys. A 2022, 128, 686. [Google Scholar] [CrossRef]
- Qiu, X.W.; Liu, C.G. Microstructure and properties of Al2CrFeCoCuTiNix high-entropy alloys prepared by laser cladding. J. Alloys Compd. 2013, 553, 216–220. [Google Scholar] [CrossRef]
- Xiao, J.K.; Wu, Y.Q.; Chen, J.; Zhang, C. Microstructure and tribological properties of plasma sprayed FeCoNiCrSiAlx high entropy alloy coatings. Wear 2020, 448–449, 203209. [Google Scholar] [CrossRef]
- He, B.; Zhang, N.N.; Lin, D.Y.; Zhang, Y.; Dong, F.Y.; Li, D.Y. The Phase Evolution and Property of FeCoCrNiAlTix High-Entropy Alloying Coatings on Q253 via Laser Cladding. Coatings 2017, 7, 157. [Google Scholar] [CrossRef]
- Daskalopoulos, I.; Chaskis, S.; Bouzouni, M.; Stavroulakis, P.; Goodall, R.; Papaefthymiou, S. Microstructural Characterization of AlCrTiV—Si High Entropy Alloy for advanced applications. MATEC Web Conf. 2021, 349, 02003. [Google Scholar] [CrossRef]
- Qiu, Y.; Thomas, S.; Gibson, M.A.; Fraser, H.L.; Pohl, K.; Birbilis, N. Microstructure and corrosion properties of the low-density single-phase compositionally complex alloy AlTiVCr. Corros. Sci. 2018, 133, 386–396. [Google Scholar] [CrossRef]
- Feng, C.; Wang, X.L.; Yang, L.; Guo, Y.L.; Wang, Y.P. High Hardness and Wear Resistance in AlCrFeNiV High-Entropy Alloy Induced by Dual-Phase Body-Centered Cubic Coupling Effects. Materials 2022, 15, 6896. [Google Scholar] [CrossRef]
- Chauhan, P.; Yebaji, S.; Nadakuduru, V.N.; Shanmugasundaram, T. Development of a novel light weight Al35Cr14Mg6Ti35V10 high entropy alloy using mechanical alloying and spark plasma sintering. J. Alloys Compd. 2020, 820, 153367. [Google Scholar] [CrossRef]
- Peng, Z.; Luo, Z.B.; Li, B.W.; Li, J.F.; Luan, H.W.; Gu, J.L.; Wu, Y.; Yao, K.F. Microstructure and mechanical properties of lightweight AlCrTiV0.5Cux high-entropy alloys. Rare Met. 2022, 41, 2016–2020. [Google Scholar] [CrossRef]
- Hao, X.H.; Liu, H.X.; Zhang, X.W.; Chen, L.; Wang, Y.Y.; Yang, C.; Liu, Y. Friction–wear behaviors and microstructure of AlTiVCrNb lightweight refractory high-entropy alloy coating prepared by laser cladding on Ti–6Al–4V substrate. J. Mater. Res. Technol. 2024, 29, 1–11. [Google Scholar] [CrossRef]
- Nussbaum, M.; Arab Pour Yazdi, M.; Michau, A.; Monsifrot, E.; Schuster, F.; Maskrot, H.; Billard, A. Mechanical properties and high temperature oxidation resistance of (AlCrTiV)N coatings synthesized by cathodic arc deposition. Surf. Coat. Technol. 2022, 434, 128228. [Google Scholar] [CrossRef]
- Poulia, A.; Georgatis, E.; Karantzalis, A. Evaluation of the Microstructural Aspects, Mechanical Properties and Dry Sliding Wear Response of MoTaNbVTi Refractory High Entropy Alloy. Met. Mater. Int. 2019, 25, 1529–1540. [Google Scholar] [CrossRef]
- Jones, M.R.; Nation, B.L.; Wellington-Johnson, J.A.; Curry, J.F.; Kustas, A.B.; Lu, P.; Chandross, M.; Argibay, N. Evidence of Inverse Hall-Petch Behavior and Low Friction and Wear in High Entropy Alloys. Sci. Rep. 2020, 10, 10151. [Google Scholar] [CrossRef] [PubMed]
- Mathiou, C.; Poulia, A.; Georgatis, E.; Karantzalis, A.E. Microstructural features and dry—Sliding wear response of MoTaNbZrTi high entropy alloy. Mater. Chem. Phys. 2018, 210, 126–135. [Google Scholar] [CrossRef]
- Qiu, Y.; Hu, Y.J.; Taylor, A.; Styles, M.J.; Marceau, R.K.W.; Ceguerra, A.V.; Gibson, M.A.; Liu, Z.K.; Fraser, H.L.; Birbilis, N.A. lightweight single-phase AlTiVCr compositionally complex alloy. Acta Mater. 2017, 123, 115–124. [Google Scholar] [CrossRef]
- Wu, M.Y.; Setiawan, R.C.; Li, D.Y. Benefits of passive element Ti to the resistance of AlCrFeCoNi high-entropy alloy to corrosion and corrosive wear. Wear 2022, 492–493, 204231. [Google Scholar] [CrossRef]
- Fan, R.; Wang, L.P.; Zhao, L.L.; Wang, L.; Zhao, S.C.; Zhang, Y.J.; Cui, B. Synergistic effect of Nb and Mo alloying on the microstructure and mechanical properties of CoCrFeNi high entropy alloy. Mater. Sci. Eng. A 2022, 829, 142153. [Google Scholar] [CrossRef]
- Wang, W.R.; Qi, W.; Zhang, X.L.; Yang, X.; Xie, L.; Li, D.Y.; Xiang, Y.H. Superior corrosion resistance-dependent laser energy density in (CoCrFeNi)95Nb5 high entropy alloy coating fabricated by laser cladding. Int. J. Miner. Metall. Mater. 2021, 28, 888–897. [Google Scholar] [CrossRef]
- Faraji, A.; Farvizi, M.; Ebadzadeh, T.; Kim, H.S. Microstructure, wear performance, and mechanical properties of spark plasma-sintered AlCoCrFeNi high-entropy alloy after heat treatment. Intermetallics 2022, 149, 107656. [Google Scholar] [CrossRef]
- Kong, D.; Guo, J.; Liu, R.W.; Zhang, X.H.; Song, Y.P.; Li, Z.X.; Guo, F.J.; Xing, X.F.; Xu, Y.; Wang, W. Effect of remelting and annealing on the wear resistance of AlCoCrFeNiTi0.5 high entropy alloys. Intermetallics 2019, 114, 106560. [Google Scholar] [CrossRef]
- Kadhim, D.F.; Koricherla, M.V.; Scharf, T.W. Room and Elevated Temperature Sliding Friction and Wear Behavior of Al0.3CoFeCrNi and Al0.3CuFeCrNi2 High Entropy Alloys. Crystals 2023, 13, 609. [Google Scholar] [CrossRef]
- Lan, L.W.; Yang, H.J.; Guo, R.P.; Wang, X.J.; Zhang, M.; Liaw, P.K.; Qiao, J.W. High-temperature sliding wear behavior of nitrided Ni45(CoCrFe)40(AlTi)15high-entropy alloys. Mater. Chem. Phys. 2021, 270, 124800. [Google Scholar] [CrossRef]
- Liang, N.N.; Wang, X.; Cao, Y.; Li, Y.S.; Zhu, Y.T.; Zhao, Y.H. Effective Surface Nano-Crystallization of Ni2FeCoMo0.5V0.2 Medium Entropy Alloy by Rotationally Accelerated Shot Peening (RASP). Entropy 2020, 22, 1074. [Google Scholar] [CrossRef]
- Dong, T.S.; Lu, P.W.; Ma, Q.L.; Li, G.L.; Liu, Q.; Fu, B.G.; Li, J.K. Effect of laser remelting on high-temperature oxidation resistance of AlCoCrFeNi high-entropy alloy coating. Surf. Coat. Technol. 2023, 466, 129608. [Google Scholar] [CrossRef]
- Ikeuchi, D.; King, D.J.M.; Laws, K.J.; Knowles, A.J.; Aughterson, R.D.; Lumpkin, G.R.; Obbard, E.G. Cr-Mo-V-W: A new refractory and transition metal high-entropy alloy system. Scr. Mater. 2019, 158, 141–145. [Google Scholar] [CrossRef]
- Esmaily, M.; Qiu, Y.; Bigdeli, S.; Venkataraman, M.B.; Allanore, A.; Birbilis, N. High-temperature oxidation behavior of AlxFeCrCoNi and AlTiVCr compositionally complex alloys, NPJ Mat. Degrad. 2020, 4, 25. [Google Scholar]
- Stepanov, N.D.; Shaysultanov, D.G.; Salishchev, G.A.; Tikhonovsky, M.A. Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy. Mater. Lett. 2015, 142, 153. [Google Scholar] [CrossRef]
- Zheng, Z.D.; Chen, Q.J.; Peng, X.Y.; Wang, H.; Qu, S.J.; Feng, A.H.; Xu, T.; Wang, K. Prediction of mechanical properties of AlTiCrVNb high entropy alloys with B2 ordered structure. J. Mater. Res. Technol. 2023, 24, 440–448. [Google Scholar] [CrossRef]
Al | Cr | Ti | V | Nb | ||
---|---|---|---|---|---|---|
Nb0.3 | A | 25.0 | 22.3 | 21.3 | 23.1 | 8.4 |
B | 24.0 | 23.6 | 22.4 | 21.7 | 8.3 | |
Nb0.4 | A | 23.8 | 21.5 | 21.4 | 22.7 | 10.9 |
B | 23.8 | 21.4 | 20.9 | 22.9 | 11.0 | |
Nb0.5 | A | 22.6 | 21.1 | 21.0 | 21.9 | 13.3 |
B | 22.8 | 20.9 | 20.8 | 22.2 | 13.3 |
Al | Cr | Ti | V | Nb | ||
---|---|---|---|---|---|---|
Nb0.3 | A | 25.2 | 22.0 | 22.4 | 22.2 | 8.2 |
B | 24.5 | 27.7 | 19.1 | 17.0 | 11.7 | |
C | 22.5 | 29.2 | 19.0 | 17.4 | 11.9 | |
Nb0.4 | A | 25.3 | 21.9 | 23.1 | 21.6 | 8.1 |
B | 22.1 | 29.5 | 19.0 | 17.4 | 12.0 | |
C | 21.9 | 30.5 | 18.6 | 15.8 | 13.2 | |
Nb0.5 | A | 25.3 | 21.9 | 23.1 | 21.6 | 8.1 |
B | 21.9 | 30.5 | 18.6 | 15.8 | 13.2 | |
C | 22.1 | 29.4 | 19.0 | 17.4 | 12.1 |
Sample | Average Friction Coefficient | |
---|---|---|
Nb0.3 | As-cast | 0.305 |
Annealed | 0.203 | |
Nb0.4 | As-cast | 0.311 |
Annealed | 0.187 | |
Nb0.5 | As-cast | 0.333 |
Annealed | 0.154 |
b (µm) | h (µm) | Wv (mm3) | K (mm3/(Nm)) | ||
---|---|---|---|---|---|
As-cast | Nb0.3 | 367.5 | 6.14 | 0.0180 | 5.010 × 10−5 |
Nb0.4 | 401.9 | 8.30 | 0.0192 | 5.337 × 10−5 | |
Nb0.5 | 442.5 | 7.48 | 0.0205 | 5.710 × 10−5 | |
Annealed | Nb0.3 | 323.7 | 7.16 | 0.0123 | 3.404 × 10−5 |
Nb0.4 | 300.6 | 5.76 | 0.0095 | 2.630 × 10−5 | |
Nb0.5 | 304.4 | 4.97 | 0.0076 | 2.117 × 10−5 |
Al | Cr | Ti | V | Nb | O | |||
---|---|---|---|---|---|---|---|---|
As-cast | Nb0.3 | A | 17.71 | 14.84 | 14.25 | 16.41 | 5.75 | 31.04 |
B | 7.83 | 5.99 | 6.51 | 6.01 | 2.36 | 71.67 | ||
C | 13.39 | 11.28 | 11.33 | 11.42 | 4.33 | 48.25 | ||
Nb0.4 | A | 17.12 | 16.42 | 16.24 | 16.47 | 7.94 | 25.81 | |
B | 10.53 | 8.79 | 8.87 | 9.18 | 4.54 | 58.08 | ||
C | 15.21 | 13.79 | 13.37 | 13.79 | 6.73 | 37.48 | ||
Nb0.5 | A | 11.48 | 11.06 | 10.73 | 10.64 | 6.62 | 49.47 | |
B | 5.99 | 9.03 | 5.64 | 5.69 | 3.31 | 70.34 | ||
C | 6.96 | 8.38 | 6.71 | 6.73 | 3.93 | 67.30 | ||
Annealed | Nb0.3 | A | 14.82 | 13.54 | 13.15 | 13.67 | 5.03 | 39.78 |
B | 4.84 | 7.48 | 4.47 | 4.54 | 1.99 | 76.69 | ||
C | 11.08 | 10.85 | 10.61 | 10.85 | 3.92 | 52.69 | ||
Nb0.4 | A | 14.64 | 13.60 | 13.30 | 14.00 | 6.67 | 37.71 | |
B | 5.79 | 8.89 | 6.76 | 7.01 | 2.88 | 68.67 | ||
C | 8.73 | 8.95 | 8.66 | 8.79 | 3.96 | 60.91 | ||
Nb0.5 | A | 15.92 | 12.18 | 13.39 | 13.11 | 7.72 | 37.68 | |
B | 8.17 | 7.44 | 7.28 | 7.31 | 4.41 | 65.39 | ||
C | 14.29 | 13.97 | 13.54 | 13.83 | 8.26 | 36.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Zhang, Z.; Luo, X.; Chen, K.; Zhang, J.; Gong, P.; Peng, Z. Microstructure and Friction Properties of AlCrTiVNbx High-Entropy Alloys via Annealing Manufactured by Vacuum Arc Melting. Materials 2024, 17, 812. https://doi.org/10.3390/ma17040812
Li B, Zhang Z, Luo X, Chen K, Zhang J, Gong P, Peng Z. Microstructure and Friction Properties of AlCrTiVNbx High-Entropy Alloys via Annealing Manufactured by Vacuum Arc Melting. Materials. 2024; 17(4):812. https://doi.org/10.3390/ma17040812
Chicago/Turabian StyleLi, Baowei, Zihao Zhang, Xiaoling Luo, Kangmin Chen, Jiaqi Zhang, Pan Gong, and Zhen Peng. 2024. "Microstructure and Friction Properties of AlCrTiVNbx High-Entropy Alloys via Annealing Manufactured by Vacuum Arc Melting" Materials 17, no. 4: 812. https://doi.org/10.3390/ma17040812
APA StyleLi, B., Zhang, Z., Luo, X., Chen, K., Zhang, J., Gong, P., & Peng, Z. (2024). Microstructure and Friction Properties of AlCrTiVNbx High-Entropy Alloys via Annealing Manufactured by Vacuum Arc Melting. Materials, 17(4), 812. https://doi.org/10.3390/ma17040812