Equation of State of Autoclaved Aerated Concrete–Oedometric Testing
Abstract
:1. Introduction
2. Testing Preparations
2.1. The Test Specimens—General Description
2.2. Test Setup
2.3. Testing Procedure
3. Testing Program
3.1. Preliminary Tests
- l0—is the specimen height;
- F—is the applied force.
3.2. Lateral Pressure Calculation
4. Experimental Results
4.1. Repeatability
4.2. Effect of Boundary Conditions and Initial Cracking
4.3. Comparisons of Different AAC Densities
- Brittle with significant disintegration, which have a clear local maximum prior to a pressure plateau.
- Ductile- with clear pressure plateau.
- Ductile without a pressure plateau.
4.4. Plastic Deformation and Energy Dissipation
5. Preliminary Thoughts on Impact Response of Different AAC Types
5.1. Preface
5.2. Numerical Simulation of AAC under Impulsive Loading—Preliminary Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
AAC | Autoclaved Aerated Concrete |
D0 | Outer diameter of the device cylinder |
d0 | Specimen diameter |
D280 | AAC type with the density of 280–300 kg/m3 |
D400 | AAC type with the density of 403–430 kg/m3 |
D600 | AAC type with the density of 595–610 kg/m3 |
D660 | AAC type with the density of 630–690 kg/m3 |
EOS | Equation of State |
F | Applied force |
hup | Distance of the upper-level’s SG from the top point of the device cylinder |
hmid | Distance of the mid-level’s SG from the top point of the device cylinder |
k | Stiffness of the “piston-rubbers-spacer” component of the device |
LVDT | Linear Variable Displacement Transducers |
l0 | Specimen height |
p | Hydrostatic pressure |
pi, i = 1, 2, 3 | Approximated pressure values at the first three points of the “COMPACTION” EOS |
p(t) | Impulsive pressure |
p(e) | Measured EOS |
pappr(e) | Approximated EOS |
pmax | Value of the rectangular impulsive pressure |
SG | Strain Gauge |
tD | Duration of the rectangular impulsive pressure |
Dl | Vertical displacement of the piston |
wup | Weighting functions for measured hoop strain at the upper level |
wmid | Weighting functions for measured hoop strain at the middle level |
wdown | Weighting functions for measured hoop strain at the lower level |
Hoop strain | |
i = 1, 2, 3 | Approximated strain values at the first three points of the “COMPACTION” EOS |
eup | Averages of three SGs’ measurements at the upper levels |
emid | Averages of three SGs’ measurements at the middle levels |
edown | Averages of three SGs’ measurements at the lower levels |
eV | Bulk strain |
Axial strain | |
Lateral pressure coefficient | |
Lateral pressure |
References
- Mathey, R.G.; Rossiter, W.J., Jr. A Review of Autoclaved Aerated Concrete Products; NBSIR 87-3670; U.S. Department of Commerce; National Bureau of Standards; National Engineering Laboratory Center for Building Technology: Gaithersburg, MD, USA, 1988. [Google Scholar]
- Gibson, L.J.; Ashby, M.F. Cellular Solids—Structures and Properties; Progress Press: Oxford, UK, 1999. [Google Scholar]
- Wu, C.; Huang, L.; Oehlers, D.J. Blast Testing of Aluminum Foam–Protected Reinforced Concrete Slabs. J. Perform. Constr. Facil. 2011, 25, 464–474. [Google Scholar] [CrossRef]
- Chi, Y.; Langdon, G.S.; Nurick, G.N. The influence of core height and face plate thickness on the response of honeycomb sandwich panels subjected to blast loading. Mater. Des. 2010, 31, 1887–1899. [Google Scholar] [CrossRef]
- Langdon, G.S.; Karagiozova, D.; Theobald, M.D.; Nurick, G.N.; Lu, G.; Merrett, R.P. Fracture of aluminium foam core sacrificial cladding subjected to air-blast loading. Int. J. Impact Eng. 2010, 37, 638–651. [Google Scholar] [CrossRef]
- Karagiozova, D.; Nurick, G.N.; Langdon, G.S.; Chung Kim Yuen, S.; Chi, Y.; Bartle, S. Response of flexible sandwich panels to blast loading. Compos. Sci. Technol. 2009, 69, 754–763. [Google Scholar] [CrossRef]
- Li, Q.M.; Meng, H. Attenuation or enhancement—A one-dimensional analysis on shock transmission in the solid phase of a cellular material. Int. J. Impact Eng. 2002, 27, 1049–1065. [Google Scholar] [CrossRef]
- Feldgun, V.R.; Karinski, Y.S.; Yankelevsky, D.Z. A Two-Phase Model to Simulate the 1-D Shock Wave Propagation in Porous Metal Foam. Int. J. Impact Eng. 2015, 82, 113–129. [Google Scholar] [CrossRef]
- Nian, W. Blast Mitigation using Cementitious Foams: Experimental Investigation and Theoretical Development. Ph.D. Thesis, The City University of New York, New York, NY, USA, 2010. [Google Scholar]
- Amran, Y.H.M.; Farzadnia, N.; Ali, A.A.A. Properties and applications of foamed concrete; a review. Constr. Build. Mater. 2015, 101, 990–1005. [Google Scholar] [CrossRef]
- Narayanan, N.; Ramamurthy, K. Structure and properties of aerated concrete: A review. Cem. Concr. Compos. 2000, 22, 321–329. [Google Scholar] [CrossRef]
- Yankelevsky, D.Z.; Avnon, I. Autoclaved aerated concrete behavior under explosive action. Constr. Build. Mater. 1998, 12, 359–364. [Google Scholar] [CrossRef]
- Merrett, R.P.; Langdon, G.S.; Theobald, M.D. The blast and impact loading of aluminium foam. Mater. Des. 2013, 44, 311–319. [Google Scholar] [CrossRef]
- Mousa, M.A.; Uddin, N. Experimental and analytical study of carbon fiber-reinforced polymer (FRP)/autoclaved aerated concrete (AAC) sandwich panels. Eng. Struct. 2009, 31, 2337–2344. [Google Scholar] [CrossRef]
- Caijun, S.; Fouad, H.F. (Eds.) Autoclaved Aerated Concrete-Properties and Structural Design; American Concrete Institute: Farmington Hills, MI, USA, 2005. [Google Scholar]
- Aroni, S.; De Groot, G.J.; Robinson, M.J.; Svanholm, G.; Wittmann, F.H. Autoclaved Aerated Concrete: Properties, Testing and Design; RILEM Recommended Practice; E&FN Spon: London, UK, 1993. [Google Scholar]
- Ferretti, D.; Michelini, E.; Rosati, G. Cracking in autoclaved aerated concrete: Experimental investigation and XFEM modelling. Cem. Concr. Res. 2015, 67, 156–167. [Google Scholar] [CrossRef]
- Li, Z.; Chen, L.; Fang, Q.; Hao, H.; Zhang, Y.; Chen, W.; Xiang, H.; Bao, Q. Study of autoclaved aerated concrete masonry walls under vented gas explosions. Eng. Struct. 2017, 141, 444–460. [Google Scholar] [CrossRef]
- Uddin, N.; Fouad, F.; Vaidya, U.K.; Khotpal, A.; Serrano-Perez, J.C. Structural Characterization of Hybrid Fiber Reinforced Polymer (FRP)–Autoclave Aerated Concrete (AAC) Panels. J. Reinf. Plast. Compos. 2006, 25, 981–999. [Google Scholar] [CrossRef]
- Wang, B.; Wang, P.; Chen, Y.; Zhou, J.; Kong, X.; Wu, H.; Fan, H.; Jin, F. Blast responses of CFRP strengthened autoclaved aerated cellular concrete panels. Constr. Build. Mater. 2017, 157, 226–236. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, B.; Zhang, B.; Zheng, Q.; Zhou, J.; Jin, F.; Fan, H. Polyurea coating for foamed concrete panel: An efficient way to resist explosion. Def. Technol. 2020, 16, 136–149. [Google Scholar] [CrossRef]
- Nian, W.; Subramaniam, K.V.L.; Andreopoulos, Y. Experimental investigation on blast response of cellular concrete. Int. J. Impact. Eng. 2016, 96, 105–115. [Google Scholar] [CrossRef]
- Serrano-Perez, J.C.; Vaidya, U.K.; Uddin, N. Low velocity impact response of autoclaved aerated concrete/CFRP sandwich plates. Compos. Struct. 2007, 80, 621–630. [Google Scholar] [CrossRef]
- Dey, V.; Bonakdar, A.; Mobasher, B. Low-velocity flexural impact response of fiber-reinforced aerated concrete. Cem. Concr. Compos. 2014, 49, 100–110. [Google Scholar] [CrossRef]
- Yu, Q.; Zeng, D.; Xu, X.; Li, S.; Dong, W.; Dai, L. Experimental and numerical investigation of polymer-reinforced and normal autoclaved aerated concrete masonry walls under large TNT explosive loads. Int. J. Impact Eng. 2022, 164, 104188. [Google Scholar] [CrossRef]
- Hao, H.; Hao, Y.; Li, J.; Chen, W. Review of the current practices in blast-resistant analysis and design of concrete structures. Adv. Struct. Eng. 2016, 19, 1193–1223. [Google Scholar] [CrossRef]
- Hanssen, A.G.; Enstock, L.; Langseth, M. Close-range blast loading of aluminium foam panels. Int. J. Impact Eng. 2002, 27, 593–618. [Google Scholar] [CrossRef]
- Main, J.A.; Gazonas, G.A. Uniaxial crushing of sandwich plates under air blast: Influence of mass distribution. Int. J. Solids Struct. 2008, 45, 2297–2321. [Google Scholar] [CrossRef]
- Trunk, B.; Schober, G.; Helbling, A.K.; Wittmann, F.H. Fracture mechanics of autoclaved aerated concrete. Cem. Concr. Res. 1999, 29, 855–859. [Google Scholar] [CrossRef]
- Zhao, H.; Yu, H.; Yuan, Y.; Zhu, H. Blast mitigation effect of the foamed cement-base sacrificial cladding for tunnel structures. Constr. Build. Mater. 2015, 94, 710–718. [Google Scholar] [CrossRef]
- Subramaniam, K.V.L.; Andreopoulos, Y. Blast Response of Cellular Cement Foams: An Experimental Evaluation. In Poromechanics V: Proceedings of the Fifth Biot Conference on Poromechanics, Vienaa Austria, 10–12 July 2013; American Society of Civil Engineers: Reston, VA, USA, 2013; pp. 943–952. [Google Scholar]
- Nian, W.; Subramaniam, K.V.L.; Andreopoulos, Y. Experimental Investigation of Blast-Pressure Attenuation by Cellular Concrete. Mater. J. 2015, 112, 21–28. [Google Scholar] [CrossRef]
- Tian, X.; Li, Q.; Lu, Z.; Wang, Z. Experimental study of blast mitigation by foamed concrete. Int. J. Prot. Struct. 2016, 7, 179–192. [Google Scholar] [CrossRef]
- Raj, A.; Sathyan, D.; Mini, K.M. Physical and functional characteristics of foam concrete: A review. Constr. Build. Mater. 2019, 221, 787–799. [Google Scholar] [CrossRef]
- Mespoulet, J.; Plassard, F.; Hereil, P.L. Strain rate sensitivity of autoclaved aerated concrete from quasi-static regime to shock loading. EPJ Web Conf. 2015, 94, 01053. [Google Scholar] [CrossRef]
- Liu, C.; Hou, J.; Hao, Y.; Hao, H.; Meng, X. Effect of high strain rate and confinement on the compressive properties of autoclaved aerated concrete. Int. J. Impact Eng. 2021, 156, 103943. [Google Scholar] [CrossRef]
- Wang, B.; Wang, H.; Kong, X.; Duan, L. Experimental Study on Autoclaved Aerated Concrete under Uniaxial Compression. In Advances in Engineering Research, 7th International Conference on Energy, Environment and Sustainable Development (ICEESD 2018), Shenzhen, China, 30–31 March 2018; Atlantis Press: Amsterdam, The Netherlands, 2018; Volume 163, pp. 779–783. [Google Scholar]
- Amirrasouli, B. Mechanical Properties of Low Density Fibre-Reinforced Cellular Concrete and its Energy Absorption Potential against Air Blast. Ph.D. Thesis, University of Manchester, Manchester, UK, 2015. [Google Scholar]
- Wang, X.; Liu, L.; Zhou, H.; Song, T.; Qiao, Q.; Hong Zhang, H. Improving the compressive performance of foam concrete with ceramsite: Experimental and meso-scale numerical investigation. Mater. Des. 2021, 208, 109938. [Google Scholar] [CrossRef]
- Xinbang, T.; Daiyu, Z.; Yunhui, N. Mechanical and Energy Absorption Properties of Foamed Concrete under One-dimension Strain Compression. Mod. Appl. Sci. 2016, 10, 195–207. [Google Scholar]
- Shang, S.Q.; Li, D.; Chen, X.M.; Xiao, Z.X. Studied on Uniaxial Compressive Mechanical Properties About Foamed Concrete. J. Wuhan Univ. Technol. 2012, 34, 24–29. [Google Scholar]
- Zhou, S.E.; Lu, Z.Y.; Jiao, L.; Li, S.X. Compression property and compression strength model of foamed concrete. J. Wuhan Univ. Technol. 2010, 32, 9–13. [Google Scholar]
- Xiong, Y.Q.; Yao, Q.F. Experimental study on the stress-strain curve of porous lightweight concrete. Sichuan Build. Sci. 2010, 36, 228–232. [Google Scholar]
- Mohd, Z.A.; Mujahid, A.; Zaidi, A.; Ismail, A.R. Physical behaviour of foamed concrete under uniaxial compressive load: Confined compressive test. Mod. Appl. Sci. 2010, 4, 126–132. [Google Scholar]
- Tan, X.; Chen, W.; Liu, H.; Chan, A.H. Stress-Strain Characteristics of Foamed Concrete Subjected to Large Deformation under Uniaxial and Triaxial Compressive Loading. J. Mater. Civ. Eng. 2018, 30, 04018095. [Google Scholar] [CrossRef]
- Lee, M.Y.; Bronowski, D.R.; Hardy, R.D. Laboratory Constitutive Characterization of Cellular Concrete; SAND Report, SAND2004-1030; U.S. Department of Commerce National Technical Information Service: Springfield, VA, USA, 2004; pp. 1–76. [Google Scholar]
- Forquin, P.; Safa, K.; Gary, G. Influence of free water on the quasi-static and dynamic strength of concrete in confined compression tests. Cem. Concr. Res. 2010, 40, 321–333. [Google Scholar] [CrossRef]
- Malecot, Y.; Daudeville, L.; Dupray, F.; Poinard, C.; Buzaud, E. Strength and damage of concrete under high triaxial loading. Eur. J. Env. Civil. Eng. 2010, 14, 777–803. [Google Scholar] [CrossRef]
- Imran, I.; Pantazopoulou, S.J. Experimental Study of Plain Concrete under Triaxial Stress. ACI Mater. J. 1996, 93, 589–601. [Google Scholar]
- Karinski, Y.S.; Zhutovsky, S.; Feldgun, V.R.; Yankelevsky, D.Z. An Experimental Study on the Equation of State of Cementitious Materials Using Confined Compression Tests. Key Eng. Mater. 2016, 711, 830–836. [Google Scholar] [CrossRef]
- Karinski, Y.S.; Yankelevsky, D.Z.; Zhutovsky, S.; Feldgun, V.R. Uniaxial confined compression tests of cementitious materials. Const. Build. Mat. 2017, 153, 247–260. [Google Scholar] [CrossRef]
- Yankelevsky, D.Z.; Karinski, Y.S.; Zhutovsky, S.; Feldgun, V.R. High-pressure uniaxial confined compression tests of mortars. Const. Build. Mat. 2018, 165, 523–532. [Google Scholar] [CrossRef]
- Tijani, I.A.; Yu-Fei Wu Lim, C.W. Aggregate size effects and general static loading response on mechanical behavior of passively confined concrete. Const. Build. Mat. 2019, 205, 61–72. [Google Scholar] [CrossRef]
- ANSYS AUTODYN. Theory Manual Revision 4.3. Century Dynamics; ANSYS AUTODYN: Concord, CA, USA, 2005. [Google Scholar]
- LSDYNA Keyword User’s Manual; LSTC: Livermore, CA, USA, 2007.
- Herrmann, W. Constitutive equation for the dynamic compaction of ductile porous materials. J. Appl. Phys. 1969, 40, 2490–2499. [Google Scholar] [CrossRef]
- Deng, C.; Cai, W.; Yin, J.; Yang, F.; Li, L. Influence of Moisture Content on Mechanical Properties of Autoclaved Aerated Concrete. Int. J. Transp. Eng. Technol. 2019, 5, 97–102. [Google Scholar] [CrossRef]
- Florek, R.; Simančík, F.; Nosko, M.; Harnúšková, J. Compression Test Evaluation Method for Aluminium Foam Parts of Different Alloys and Densities. Powder Metall. Prog. 2010, 10, 207–212. [Google Scholar]
- Lopatnikov, S.L.; Gama, B.A.; Haque, M.J.; Krauthauser, C.; Guden, M.; Hall, I.W.; Gillespie, J.W. Dynamics of metal foam deformation during Taylor cylinder—Hopkinson bar impact experiment. Compos. Struct. 2003, 61, 61–71. [Google Scholar] [CrossRef]
- Tan, P.J.; Reid, S.R.; Harrigan, J.J.; Zou, Z.; Li, S. Dynamic compressive strength properties of aluminium foams. Part I-Exp. Data Obs. J. Mech. Phys. Solids 2005, 53, 2174–2205. [Google Scholar] [CrossRef]
- Goel, M.D.; Matsagar, V.A.; Gupta, A.K.; Marburg, S. Strain rate sensitivity of closed cell aluminium fly ash foam. Trans. Nonferrous Met. Soc. China 2013, 23, 1080–1089. [Google Scholar] [CrossRef]
Type | Specimen | Weight (g) | Height (mm) | Diameter (mm) | Density (kg/m3) | Density CoV (%) | |
---|---|---|---|---|---|---|---|
By Samples | Ave. | ||||||
D660 | S1 | 353.2 | 138.27 | 68.70 | 689.13 | 663.95 | 2.59 |
S2 | 336.2 | 140.43 | 68.17 | 655.98 | |||
S3 | 344.1 | 140.03 | 68.73 | 662.26 | |||
S4 | 345.1 | 140.13 | 68.50 | 668.24 | |||
S5 | 342.1 | 138.90 | 68.03 | 677.51 | |||
S6 | 323.5 | 139.67 | 68.17 | 634.67 | |||
S7 | 333.3 | 139.77 | 67.83 | 659.87 | |||
D600 | S1 | 312.6 | 140.40 | 69.00 | 595.43 | 601.17 | 0.84 |
S2 | 310.8 | 139.63 | 68.80 | 598.72 | |||
S3 | 307.5 | 140.07 | 68.03 | 603.92 | |||
S4 | 308.1 | 140.13 | 67.93 | 606.59 | |||
D400 | S1 | 205.8 | 140.07 | 68.07 | 403.79 | 421.48 | 3.21 |
S2 | 219.8 | 139.40 | 68.23 | 431.20 | |||
S3 | 208.6 | 140.00 | 67.37 | 418.03 | |||
S4 | 222.1 | 140.30 | 68.23 | 432.92 | |||
D280 | S1 | 147.6 | 140.03 | 67.97 | 290.52 | 290.24 | 1.43 |
S2 | 144 | 140.00 | 67.87 | 284.34 | |||
S3 | 147.5 | 140.07 | 67.40 | 295.15 | |||
S4 | 147.3 | 140.20 | 68.10 | 288.45 | |||
S5 | 148.8 | 140.10 | 67.97 | 292.74 |
Type | Plateau Pressure (MPa) | Peak-to-Plateau Pressures Ratio | Plateau Bulk Strain Range (%) |
---|---|---|---|
D280 | 0.6 | 10.2 | 15–60 |
D400 | 1.33 | 1.65 | 15–45 |
D600 | 10.6 (minimum value) | 1.18 | ~0 (one point) |
D660 | no | no | no |
Force (kN) | S1 | S2 | S3 | S4 | Average | COV (%) |
---|---|---|---|---|---|---|
D280 * | ||||||
150 | 1.39 | 1.77 | 2.43 | 1.27 | 1.72 | 26.29 |
450 | 3.55 | 4.07 | 4.76 | 3.49 | 3.97 | 12.87 |
3000 | 14.72 | 15.24 | 15.19 | 13.50 | 14.66 | 4.80 |
D400 | ||||||
150 | 1.61 | 1.84 | 1.83 | 1.73 | 1.75 | 5.35 |
450 | 4.31 | 4.81 | 4.68 | 4.73 | 4.63 | 4.13 |
4500 | 23.65 | 25.91 | 22.48 | 23.71 | 23.94 | 5.19 |
D600 | ||||||
150 | 3.02 | 4.56 | 5.59 | 3.12 | 4.07 | 26.25 |
450 | 7.18 | 9.34 | 10.38 | 7.37 | 8.57 | 15.72 |
4500 | 36.72 | 43.32 | 39.57 | 37.32 | 39.23 | 6.59 |
D660 | ||||||
150 | 1.89 | 2.20 | 3.05 | 3.12 | 2.56 | 20.82 |
450 | 5.63 | 5.91 | 7.54 | 7.32 | 6.60 | 12.73 |
4500 | 34.23 | 34.20 | 38.69 | 35.39 | 35.63 | 5.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karinski, Y.S.; Feldgun, V.R.; Yankelevsky, D.Z. Equation of State of Autoclaved Aerated Concrete–Oedometric Testing. Materials 2024, 17, 956. https://doi.org/10.3390/ma17040956
Karinski YS, Feldgun VR, Yankelevsky DZ. Equation of State of Autoclaved Aerated Concrete–Oedometric Testing. Materials. 2024; 17(4):956. https://doi.org/10.3390/ma17040956
Chicago/Turabian StyleKarinski, Yuri S., Vladimir R. Feldgun, and David Z. Yankelevsky. 2024. "Equation of State of Autoclaved Aerated Concrete–Oedometric Testing" Materials 17, no. 4: 956. https://doi.org/10.3390/ma17040956
APA StyleKarinski, Y. S., Feldgun, V. R., & Yankelevsky, D. Z. (2024). Equation of State of Autoclaved Aerated Concrete–Oedometric Testing. Materials, 17(4), 956. https://doi.org/10.3390/ma17040956