A State-Dependent Elasto-Plastic Model for Hydrate-Bearing Cemented Sand Considering Damage and Cementation Effects
Abstract
:1. Introduction
2. Model Formulation
2.1. Implication of Damage
2.2. Bonding and Debonding Regulations of Hydrate-Bearing Cemented Sand
2.3. Elasticity Stage
2.4. Yield Function Considering the Effects of Cementation and Damage
2.5. Critical State
2.6. State-Dependent Dilatancy Function
2.7. Hardening Rule
3. Calibration of the State-Dependent Elasto-Plastic Model Parameters
4. Model Validation and Analysis
5. Conclusions
- (1)
- A nonlinear state-dependent elasto-plastic constitutive model based on cementation and damage in hydrate-bearing cemented sand is constructed for the phenomena of natural gas hydrate cementation weakening and soil damage. This is achieved by introducing a quantitative description of the hydrate’s cementation and decomposition mechanism, taking into account the damage factor Ds and the cementation damage strength factor Ph. The model captures the deviatoric stress q, volumetric strain εv, and axial stress of hydrate-bearing cemented sands with acceptable accuracy at different hydrate saturation, effective confining pressure, and void ratio levels, when compared to data from drainage triaxial tests by Hyodo et al. [59] and other scholars, suggesting that the model is valid in representing the intricate mechanical behavior of compromised cementation and soil particles degradation in cemented sand.
- (2)
- The state parameters represent the potential strength of cemented soil, and further introduce the state-dependent dilatancy equations. Compared to the previous model, a set of model parameters can be used to reproduce the mechanical properties of hydrate-bearing cemented sand with varying effective perimeter pressures, hydrate saturations, and void ratios. The strength of hydrate-bearing cemented sand against deviatoric stress increased with increasing hydrate saturation and surrounding pressure, and the peak strength was higher than that of substrate sand. The dilatancy phenomenon becomes more pronounced with decreasing effective confining pressure. Additionally, this agrees with experimental results of Hyodo et al. [59]. For different porosities, the loose specimens show strain hardening and compression behavior, and the dense specimens show slight strain softening and volume expansion behavior, with minor deviations from the model calculations at lower peripheral pressures.
- (3)
- The simulated curves have slightly lower peak intensities compared to the experimental curves due to the inclusion of damage factors in the model that consider soil deterioration and gas hydrate decomposition. As the saturation of the gas hydrate increases, both the soil yield and the gas hydrate become more susceptible to distortion and breakdown. Unlike previous hydrate models, the damage index s controls the magnitude of the peak intensity of the stress-strain curve by measuring the rate of damage to the sand. The gas hydrate decomposition rate can be modified based on the impact of different external elements, which indicates the mechanical damage characteristics of cemented sand containing cemented hydrate under intricate circumstances.
- (4)
- This study exclusively focuses on the cementing impact of hydrate-bearing cemented sand, disregarding other mechanical consequences of hydrate, such as the reduction in sediment porosity. Consequently, the model utilized in this study requires improvement. The next step will consist of examining the legal consequences of hydrate cementation damage and developing a constitutive model that incorporates hydrate compaction.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Symbol | Explanatory note |
The major primary stress | |
The minor primary stress | |
The major principal strain increment | |
The minor principal strain increment | |
The elastic volumetric strain increment | |
The plastic volumetric strain increment | |
The elastic shear strain increment | |
The plastic shear strain increment | |
Ds | The damage variable |
The hydrate saturation | |
G | The elastic shear parameter |
K | The elastic bulk parameter |
μ | Poisson’s ratio |
P0 | The atmospheric pressure |
Gp | The shear stiffness parameter |
The stress ratio at yielding | |
Kp | The parameter of plastic hardening |
M | The critical stress ratio |
The void ratio of sand | |
D | The dilatancy equation |
References
- Gajanayake, S.M.; Gamage, R.P.; Li, X.S.; Huppert, H. Natural gas hydrates–Insights into a paradigm-shifting energy resource. Energy Rev. 2023, 2, 100013. [Google Scholar] [CrossRef]
- Ruan, X.; Li, X.S.; Xu, C.G. A review of numerical research on gas production from natural gas hydrates in China. J. Nat. Gas Sci. Eng. 2021, 85, 103713. [Google Scholar] [CrossRef]
- Boswell, R.; Collett, T.S. Current perspectives on gas hydrate resources. Energy Environ. Sci. 2011, 4, 1206–1215. [Google Scholar] [CrossRef]
- Milkov, A.V. Global estimates of hydrate-bound gas in marine sediments: How much is really out there? Earth-Sci. Rev. 2004, 66, 183–197. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, X.; Che, Y.; Li, P.; Jiang, Y.; Peng, X. Identification and Analysis of Unstable Slope and Seasonal Frozen Soil Area along the Litang Section of the Sichuan–Tibet Railway, China. Remote Sens. 2023, 15, 1317. [Google Scholar] [CrossRef]
- Zhu, Y.H.; Pang, S.J.; Xiao, R.; Zhang, S.; Lu, Z.Q. Natural gas hydrates in the Qinghai-Tibet Plateau: Characteristics, formation, and evolution. China Geol. 2021, 4, 17–31. [Google Scholar] [CrossRef]
- Gajanan, K.; Ranjith, P.G.; Yang, S.Q.; Xu, T. Advances in research and developments on natural gas hydrate extraction with gas exchange. Renew. Sustain. Energy Rev. 2024, 190, 114045. [Google Scholar] [CrossRef]
- Dong, H.; Sun, J.; Arif, M.; Liu, X.; Golsanami, N.; Yan, W.; Zhang, Y. A Method for Well Logging Identification and Evaluation of Low-Resistivity Gas Hydrate Layers. Pure Appl. Geophys. 2022, 179, 3357–3376. [Google Scholar] [CrossRef]
- Both, A.K.; Gao, Y.; Zeng, X.C.; Cheung, C.L. Gas hydrates in confined space of nanoporous materials: New frontier in gas storage technology. Nanoscale 2021, 13, 7447–7470. [Google Scholar] [CrossRef]
- Chen, Y.; Tong, H.; Chen, Q.; Du, X.; Wang, S.; Pan, Y. Chemical Corrosion-Water-Confining Pressure Coupling Damage Constitutive Model of Rock Based on the SMP Strength Criterion. Materials 2023, 16, 6234. [Google Scholar] [CrossRef]
- Liu, G.; Chen, Y.; Du, X.; Xiao, P.; Liao, S.; Azzam, R. Investigation of Microcrack Propagation and Energy Evolution in Brittle Rocks Based on the Voronoi Model. Materials 2021, 14, 2108. [Google Scholar] [CrossRef]
- Liu, G.; Chen, Y.; Du, X.; Wang, S.; Fernández-Steeger, T.M. Evolutionary Analysis of Heterogeneous Granite Microcracks Based on Digital Image Processing in Grain-Block Model. Materials 2022, 15, 1941. [Google Scholar] [CrossRef]
- Tong, H.; Chen, Y.; Chen, Q.; Du, X.; Xiao, P.; Wang, S. A true triaxial creep constitutive model of rock considering the coupled thermo-mechanical damage. Energy 2023, 285, 129397. [Google Scholar] [CrossRef]
- Makogon, Y.F. Natural gas hydrates—A promising source of energy. J. Nat. Gas Sci. Eng. 2010, 2, 49–59. [Google Scholar] [CrossRef]
- You, K.; Flemings, P.B.; Malinverno, A.; Collett, T.S.; Darnell, K. Mechanisms of methane hydrate formation in geological systems. Rev. Geophys. 2019, 57, 1146–1196. [Google Scholar] [CrossRef]
- Ren, J.; Liu, X.; Niu, M.; Yin, Z. Effect of sodium montmorillonite clay on the kinetics of CH4 hydrate—Implication for energy recovery. Chem. Eng. J. 2022, 437, 135368. [Google Scholar] [CrossRef]
- Yoneda, J.; Jin, Y.; Katagiri, J.; Tenma, N. Strengthening mechanism of cemented hydrate-bearing sand at microscales. Geophys. Res. Lett. 2016, 43, 7442–7450. [Google Scholar] [CrossRef]
- Waite, W.F.; Winters, W.J.; Mason, D.H. Methane hydrate formation in partially water-saturated Ottawa sand. Am. Mineral. 2004, 89, 1202–1207. [Google Scholar] [CrossRef]
- Silvestri, V. Behavior of an Oviangerconsolidated Sensitive Clay in Drained—Triaxial Tests. Lab. Shear. Strength Soil 1981, 619–630. [Google Scholar] [CrossRef]
- Abbasi, G.R.; Arif, M.; Isah, A.; Ali, M.; Mahmoud, M.; Hoteit, H.; Iglauer, S. Gas hydrate characterization in sediments via x-ray microcomputed tomography. Earth-Sci. Rev. 2022, 234, 104233. [Google Scholar] [CrossRef]
- Brown, H.E.; Holbrook, W.S.; Hornbach, M.J.; Nealon, J. Slide structure and role of gas hydrate at the northern boundary of the Storegga Slide, offshore Norway. Mar. Geol. 2006, 229, 179–186. [Google Scholar] [CrossRef]
- Miyazaki, K.; Tenma, N.; Aoki, K.; Yamaguchi, T. A Nonlinear Elastic Model for Triaxial Compressive Properties of Artificial Methane-Hydrate-Bearing Sediment Samples. Energies 2012, 5, 4057–4075. [Google Scholar] [CrossRef]
- Ng, C.W.W.; Baghbanrezvan, S.; Kadlicek, T.; Zhou, C. A state-dependent constitutive model for methane hydrate-bearing sediments inside the stability region. Géotechnique 2020, 70, 1094–1108. [Google Scholar] [CrossRef]
- Shen, J.; Chiu, C.F.; Ng, C.W.W.; Lei, G.H.; Xu, J. A state-dependent critical state model for methane hydrate-bearing sand. Comput. Geotech. 2016, 75, 1–11. [Google Scholar] [CrossRef]
- Sultan, N.; Garziglia, S. Geomechanical constitutive modelling of gas-hydrate-bearing sediments. In Proceedings of the ICGH 2011, Edinburgh, UK, 17–21 July 2011. [Google Scholar]
- Uchida, S.; Soga, K.; Yamamoto, K. Critical state soil constitutive model for methane hydrate soil. J. Geophys. Res. 2012, 117, B3. [Google Scholar] [CrossRef]
- Hyodo, M.; Li, Y.; Yoneda, J.; Nakata, Y.; Yoshimoto, N.; Nishimura, A. Effects of dissociation on the shear strength and deformation behavior of methane hydrate-bearing sediments. Mar. Petrol. Geol. 2014, 51, 52–62. [Google Scholar] [CrossRef]
- Zhang, X.H.; Luo, D.S.; Lu, X.B.; Liu, L.L.; Liu, C.L. Mechanical properties of gas hydrate-bearing sediments during hydrate dissociation. Acta Mech. Sin. 2018, 34, 266–274. [Google Scholar] [CrossRef]
- Li, Y.; Wu, P.; Sun, X.; Liu, W.; Song, Y. Mechanical behaviors of hydrate-bearing sediment with different cementation spatial distributions at microscales. iScience 2021, 24, 102448. [Google Scholar] [CrossRef]
- Wang, L.Z.; Li, L.L. Valuation of Poisson’s ratio in nonlinear elastic modeling of structural soft soils. J. Water. Res. 2006, 150–159+165. (In Chinese) [Google Scholar]
- Yoshimoto, M.; Kimoto, S. Undrained creep behavior of CO2 hydrate-bearing sand and its constitutive modeling considering the cementing effect of hydrates. Soils. Found 2022, 62, 101095. [Google Scholar] [CrossRef]
- Iwai, H.; Kawasaki, T.; Zhang, F. Constitutive model for gas hydrate-bearing soils considering different types of hydrate morphology and prediction of strength-band. Soils. Found 2022, 62, 101103. [Google Scholar] [CrossRef]
- Bhattacharjee, G.; Veluswamy, H.P.; Kumar, A.; Linga, P. Asheesh Kumar a c, Praveen Linga a. Stability analysis of methane hydrates for gas storage application. Chem. Eng. J. 2021, 415, 128927. [Google Scholar] [CrossRef]
- Fu, Z.; Chen, S.; Zhong, Q.; Ji, E. A damage hypoplasticity constitutive model for cemented sand and gravel materials. Acta Geotech. 2022, 17, 1–18. [Google Scholar] [CrossRef]
- Almenningen, S.; Gauteplass, J.; Fotland, P.; Aastveit, G.L.; Barth, T.; Ersland, G. Visualization of hydrate formation during CO2 storage in water-saturated sandstone. Int. J. Greenh. Gas. Control 2018, 79, 272–278. [Google Scholar] [CrossRef]
- Yan, R.T.; Liang, W.Y.; Wei, C.F.; Wu, E.L. Ontological modeling of hydrate-bearing sediments taking into account the influence of storage mode. Geotech. Mechan. 2017, 38, 10–18. (In Chinese) [Google Scholar]
- Yin, S.; Hou, Y.; Chen, X.; Zhang, M.; Du, H.; Gao, C. Mechanical behavior, failure pattern and damage evolution of fiber-reinforced cemented sulfur tailings backfill under uniaxial loading. Constr. Build. Mater. 2022, 332, 127248. [Google Scholar] [CrossRef]
- De La Fuente, M.; Vaunat, J.; Marín-Moreno, H. A densification mechanism to model the mechanical effect of methane hydrates in sandy sediments. Int. J. Numer. Anal. Met. 2020, 44, 782–802. [Google Scholar] [CrossRef]
- Zhu, E.Y.; Li, X.Q. Uniform hardening model for cemented structural soils. Geotechnics 2018, 39, 112–122. (In Chinese) [Google Scholar]
- Ji, F.L.; Lu, Q.F.; Li, M.D. Structural Modeling of Lightweight Mixed Soil with Dredged Silt EPS Particles. J. Shenzhen Univ. 2006, 195–200. (In Chinese) [Google Scholar]
- Nguyen, L.D.; Fatahi, B.; Khabbaz, H. A constitutive model for cemented clays capturing cementation degradation. Int. J. Plast. 2014, 56, 1–18. [Google Scholar] [CrossRef]
- Li, X.S.; Dafalias, Y.F.; Wang, Z.L. State-dependant dilatancy in critical-state constitutive modelling of sand. Can. Geotech. J. 1999, 36, 599–611. [Google Scholar] [CrossRef]
- Li, X.S.; Dafalias, Y.F. Dilatancy for cohesionless soils. Géotechnique 2000, 50, 449–460. [Google Scholar] [CrossRef]
- Suebsuk, J.; Horpibulsuk, S.; Liu, M.D. A critical state model for overconsolidated structured clays. Comput. Geotech. 2011, 38, 648–658. [Google Scholar] [CrossRef]
- Drucker, D.C.; Gibson, R.E.; Henkel, D.J. Soil Mechanics and Work-Hardening Theories of Plasticity. Tran. Am. Soc. Civil. Eng. 1957, 122, 33846. [Google Scholar] [CrossRef]
- Roscoe, K.H.; Burland, J.B. On the generalized stress-strain behaviour of wet clay. In Engineering Plasticity; Cambridge University Press: Cambridge, UK, 1968. [Google Scholar]
- Roscoe, K.H.; Schofield, A.N.; Thurairajah, A. Yielding of Clays in States Wetter than Critical. Géotechnique 1963, 13, 211–240. [Google Scholar] [CrossRef]
- DiMaggio, F.L.; Sandler, I.S. Material Model for Granular Soils. J. Eng. Mech. Div. 1997, 97, 935–950. [Google Scholar] [CrossRef]
- Sandler, I.S.; Baladi, G.Y.; DiMaggio, F.L. Generalized Cap Model for Geological Materials. J. Geotech. Eng. Div. 1976, 102, 683–699. [Google Scholar] [CrossRef]
- Huang, T.K.; Chen, W.F. Simple Procedure for Determining Cap-Plasticity-Model Parameters. J. Geotech. Eng. 1990, 116, 492–513. [Google Scholar] [CrossRef]
- Zhang, Y.B.; Wen, X.; Jin, J.K.; Zhao, C.H. An elasto-plastic constitutive model for deep-sea energy soils considering the effects of cementation and damage. Ind. Technol. Vocat. Educ. 2023, 21, 15–19. (In Chinese) [Google Scholar]
- Kim, J.; Dai, S.; Jang, J.; Waite, W.F.; Collett, T.S.; Kumar, P. Compressibility and particle crushing of Krishna-Godavari Basin sediments from offshore India: Implications for gas production from deep-water gas hydrate deposits. Mar. Petrol. Geol. 2019, 108, 697–704. [Google Scholar] [CrossRef]
- Consoli, N.C.; Cruz, R.C.; Da Fonseca, A.V.; Coop, M.R. Influence of Cement-Voids Ratio on Stress-Dilatancy Behavior of Artificially Cemented Sand. J. Geotech. Geoenviron. Eng. 2012, 138, 100–109. [Google Scholar] [CrossRef]
- Xiao, Y.; Liu, H.; Chen, Y.; Jiang, J.; Zhang, W. Testing and modeling of the state-dependent behaviors of rockfill material. Comput. Geotech. 2014, 61, 153–165. [Google Scholar] [CrossRef]
- Clayton, C.R.I.; Priest, J.A.; Rees, E.V.l. The effects of hydrate cement on the stiffness of some sands. Géotechnique 2010, 60, 435–445. [Google Scholar] [CrossRef]
- Manzari, M.T.; Dafalias, Y.F. A critical state two-surface plasticity model for sands. Géotechnique 1997, 47, 255–272. [Google Scholar] [CrossRef]
- Dafalias, Y.F. An anisotropic critical state soil plasticity model. Mech. Res. Commun. 1986, 13, 341–347. [Google Scholar] [CrossRef]
- Hyodo, M.; Li, Y.; Yoneda, J.; Nakata, Y.; Yoshimoto, N.; Nishimura, A. Mechanical behavior of gas-saturated methane hydrate-bearing sediments. J. Geophys. Res. Solid Earth 2013, 118, 5185–5194. [Google Scholar] [CrossRef]
- Hyodo, M.; Yoneda, J.; Yoshimoto, N.; Nakata, Y. Mechanical and dissociation properties of methane hydrate-bearing sand in deep seabed. Soils Found. 2013, 53, 299–314. [Google Scholar] [CrossRef]
- Hyodo, M.; Yamamoto, Y.; Sugiyama, M. Undrained cyclic shear behaviour of normally consolidated clay subjected to initial static shear stress. Soils Found. 1994, 34, 1–11. [Google Scholar] [CrossRef]
- Masui, A.; Haneda, H.; Ogata, Y.; Aoki, K. Effects of Methane Hydrate Formation on Shear Strength of Synthetic Methane Hydrate Sediments. In Proceedings of the ISOPE International Ocean and Polar Engineering Conference, Isope, Seoul, Republic of Korea, 19–24 June 2005; p. ISOPE-I-05-056. [Google Scholar]
- Miyazaki, K.; Masui, A.; Sakamoto, Y.; Aoki, K.; Tenma, N.; Yamaguchi, T. Triaxial compressive properties of artificial methane-hydrate-bearing sediment. J. Geophys. Res. Solid Earth. 2011, 116, B06102. [Google Scholar] [CrossRef]
- Been, K.; Jefferies, M.G. Discussion: A state parameter for sands. Géotechnique 1986, 36, 123–132. [Google Scholar] [CrossRef]
- Chiu, C.F.; Ng, C.W.W. A state-dependent elasto-plastic model for saturated and unsaturated soils. Géotechnique 2003, 53, 809–829. [Google Scholar] [CrossRef]
Symbol | Physical Meaning of Parameters | Value (Dimensionless) |
---|---|---|
Poisson’s ratio | 0.05 | |
Gp | The shear modulus factor | 300 |
Model parameter, the slope of lines of critical state | 0.127 | |
M | Critical stress ratio for substrate sand | 1.16 |
Model parameter for void ratio of substrate sand | 1.119 | |
n0 | Model parameter for dilatancy | 1.62 |
b | Model parameter for dilatancy | 1.31 |
l1 | The plastic modulus parameter | 1.96 |
l2 | The plastic modulus parameter | 2.23 |
j | Model hardening rule parameter | 0.78 |
Symbol | Physical Meaning of Parameters | Value (Dimensionless) |
---|---|---|
An elastic modulus parameter denoting the gradient of the simulation line in Figure 1 | 215.7 | |
The critical state model parameters | 0.58 | |
The critical state model parameters | 1.99 | |
The critical state model parameters | 0.36 | |
The critical state model parameters | 1.38 | |
g | Bonding parameter | 1.59 |
c | Bonding parameter | 0.67 |
vc | Debonding model parameter density on the plastic modulus | 7.89 |
s | Damage factor | −0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, H.; Chen, Y.; Du, X.; Chen, S.; Pan, Y.; Wang, S.; Peng, B.; Azzam, R.; Fernandez-Steeger, T.M. A State-Dependent Elasto-Plastic Model for Hydrate-Bearing Cemented Sand Considering Damage and Cementation Effects. Materials 2024, 17, 972. https://doi.org/10.3390/ma17050972
Tong H, Chen Y, Du X, Chen S, Pan Y, Wang S, Peng B, Azzam R, Fernandez-Steeger TM. A State-Dependent Elasto-Plastic Model for Hydrate-Bearing Cemented Sand Considering Damage and Cementation Effects. Materials. 2024; 17(5):972. https://doi.org/10.3390/ma17050972
Chicago/Turabian StyleTong, Huidong, Youliang Chen, Xi Du, Siyu Chen, Yungui Pan, Suran Wang, Bin Peng, Rafig Azzam, and Tomas Manuel Fernandez-Steeger. 2024. "A State-Dependent Elasto-Plastic Model for Hydrate-Bearing Cemented Sand Considering Damage and Cementation Effects" Materials 17, no. 5: 972. https://doi.org/10.3390/ma17050972
APA StyleTong, H., Chen, Y., Du, X., Chen, S., Pan, Y., Wang, S., Peng, B., Azzam, R., & Fernandez-Steeger, T. M. (2024). A State-Dependent Elasto-Plastic Model for Hydrate-Bearing Cemented Sand Considering Damage and Cementation Effects. Materials, 17(5), 972. https://doi.org/10.3390/ma17050972