Jet-Printable, Low-Melting-Temperature Ga–xSn Eutectic Composites: Application in All-Solid-State Batteries
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Characteristics of Ga–xSn Electrodes for a Wet Half-Cell
3.2. Assembly and Testing of the Ga–xSn Electrode in All-Solid-State Batteries
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Park, E.; So, S.; Hur, J. Carbon-free hydrated cobalt vanadium oxide as a promising anode for lithium-ion batteries. Appl. Surf. Sci. 2022, 579, 152182. [Google Scholar] [CrossRef]
- Baumgartner, J.F.; Krumeich, F.; Worle, M.; Kravchyk, K.V.; Kovalenko, M.V. Thermal synthesis of conversion-type bismuth fluoride cathodes for high-energy-density Li-ion batteries. Commun. Chem. 2022, 5, 6. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.H.; Wu, L.P.; Zhou, D.; Weng, W.; Yao, X.Y. Flexible Sulfide Electrolyte Thin Membrane with Ultrahigh Ionic Conductivity for All-Solid-State Lithium Batteries. Nano Lett. 2021, 21, 5233–5239. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.Z.; Shi, J.; Zhu, M.T.; Weng, W.; Shen, L.; Yang, J.; Yao, X.Y. Ultra-thin free-standing sulfide solid electrolyte film for cell-level high energy density all-solid-state lithium batteries. Energy Storage Mater. 2021, 38, 249–254. [Google Scholar] [CrossRef]
- Gill, D.; Kumar, M.; Basera, P.; Bhattacharya, S. Understanding the lonic diffusivity in the (Meta) stable (Un) doped solid-state electrolyte from first-principles: A case study of LISICON. J. Phys. Chem. C 2020, 124, 17485–17493. [Google Scholar] [CrossRef]
- Wu, J.H.; Shen, L.; Zhang, Z.H.; Liu, G.Z.; Wang, Z.Y.; Zhou, D.; Wan, H.L.; Xu, X.X.; Yao, X.Y. All-Solid-State Lithium Batteries with Sulfide Electrolytes and Oxide Cathodes. Electrochem. Energy Rev. 2021, 4, 101–135. [Google Scholar] [CrossRef]
- Wu, J.H.; Liu, S.F.; Han, F.D.; Yao, X.Y.; Wang, C.S. Lithium/Sulfide All-Solid-State Batteries using Sulfide Electrolytes. Adv. Mater. 2021, 33, 2000751. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Wu, M.; Wei, L.; Lin, Y.; Zhao, T. A composite solid electrolyte with a framework of vertically aligned perovskite for all-solid-state Li-metal batteries. J. Membr. Sci. 2020, 610, 118265. [Google Scholar] [CrossRef]
- Kim, Y.C.; Jung, K.N.; Lee, J.W.; Park, M.S. Improving the ionic conductivity of Li1+xAlxGe2-x(PO4)3 solid electrolyte for all-solid-state batteries using microstructural modifiers. Ceram. Int. 2020, 46, 23200–23207. [Google Scholar] [CrossRef]
- Dong, B.; Stockham, M.P.; Chater, P.A.; Slater, P.R. X-ray pair distribution function analysis and electrical and electrochemical properties of cerium doped Li5La3Nb2O12 garnet solid-state electrolyte. Dalton Trans. 2020, 49, 11727–11735. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Y. Tailored Solid Polymer Electrolytes by Montmorillonite with High Ionic Conductivity for Lithium-Ion Batteries. Nanoscale Res. Lett. 2019, 14, 366. [Google Scholar] [CrossRef] [PubMed]
- Calpa, M.; Rosero-Navarro, N.C.; Miura, A.; Tadanaga, K.; Matsuda, A. Graphite/Li7P3S11 composite prepared by seed process for all-solid-state batteries. Solid State Ion. 2021, 372, 115789. [Google Scholar] [CrossRef]
- Maohua, C.; Rao, R.P.; Adams, S. High capacity all-solid-state Cu-Li2S/Li6PS5Br/In batteries. Solid State Ion. 2014, 262, 183–187. [Google Scholar] [CrossRef]
- Li, X.N.; Liang, J.W.; Kim, J.T.; Fu, J.M.; Duan, H.; Chen, N.; Li, R.Y.; Zhao, S.Q.; Wang, J.T.; Huang, H.; et al. Highly stable halide-electrolyte-based all-solid-state Li-Se, batteries. Adv. Mater. 2022, 34, 2200856. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.P.; Huang, X.K.; Huang, L.; Guo, X.R.; Ren, R.; Liu, D.; Qu, D.Y.; Chen, J.H. Self-healing liquid metal and Si composite as a high-performance anode for lithium-ion batteries. ACS Appl. Energy Mater. 2018, 1, 1395–1399. [Google Scholar] [CrossRef]
- Hung, F.Y.; Yang, K.Y. Al-Ga coating mechanism and discharge-charge characteristics of Li-Mn-O cathode powders at −30–55 °C. J. Power Sources 2014, 268, 7–13. [Google Scholar] [CrossRef]
- Deshpande, R.D.; Li, J.; Cheng, Y.T.; Verbrugge, M.W. Liquid metal alloys as self-healing negative electrodes for lithium ion batteries. J. Electrochem. Soc. 2011, 158, A845–A849. [Google Scholar] [CrossRef]
- Nishida, Y.; Nakane, K.; Satoh, T. Synthesis and properties of gallium-doped LiNiO2 as the cathode material for lithium secondary. J. Power Sources 1997, 68, 561–564. [Google Scholar] [CrossRef]
- Lee, K.T.; Jung, Y.S.; Oh, S.M. Synthesis of tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries. J. Am. Chem. Soc. 2003, 125, 5652–5653. [Google Scholar] [CrossRef]
- Wu, Y.P.; Huang, L.; Huang, X.K.; Guo, X.R.; Liu, D.; Zheng, D.; Zheng, X.L.; Ren, R.; Qu, D.Y.; Chen, J.H. A room-temperature liquid metal-based self-healing anode for lithium-ion batteries with an ultra-long cycle life. Energy Environ. Sci. 2017, 10, 1854–1861. [Google Scholar] [CrossRef]
- Liu, M.Y.; Huang, J.F.; Li, J.L.; Cao, L.Y.; Zhao, Y.X.; Ma, M.; Koji, K. Manipulating the stress of Sn in carbon structure to realize long-life high performance sodium ion battery anode material. J. Alloys Compd. 2020, 834, 155177. [Google Scholar] [CrossRef]
- Chen, K.J.; Hung, F.Y.; He, Y.T. Charge-Discharge properties of Sputtered Mg Anode in Flexible All-Solid-State Mg-ion Batteries. ACS Omega 2022, 7, 43161–43168. [Google Scholar] [CrossRef]
- Chen, K.J.; Hung, F.Y.; Lui, T.S.; Xiao, R.S. Improvement of Charge-Discharge Characteristics of the Mg-Ni Powder Electrodes at 55 °C. J. Nanomater. 2013, 2013, 638953. [Google Scholar] [CrossRef]
- Song, M.J.; Zhang, Z.H. Self-healing Ga-based liquid metal/alloy anodes for rechargeable batteries. Nano Res. 2023, 17, 12274. [Google Scholar] [CrossRef]
- Anderson, T.J.; Ansara, I. The Ga–Sn (gallium-tin) system. J. Phase Equilibria 1992, 13, 181–189. [Google Scholar] [CrossRef]
- Gancarz, T. Density, surface tension and viscosity of Ga–Sn alloys. J. Mol. Liq. 2017, 241, 231–236. [Google Scholar] [CrossRef]
- Lei, N.; Huang, Z.; Rice, S.A. Structure of the liquid–vapor interface of a Sn: Ga alloy. J. Chem. Phys. 1997, 107, 4051–4060. [Google Scholar] [CrossRef]
- Ashkotov, O.G.; Zdravomislov, M.V. Study of surface segregation and surface tension of Sn-Ga solution using AES and sessile drop methods. Surf. Sci. 1995, 338, 279–282. [Google Scholar] [CrossRef]
- Wu, Y.; Han, T.; Huang, X.; Lin, X.; Hu, Y.; Chen, Z.; Liu, J. A Ga–Sn liquid alloy-encapsulated self-healing microcapsule as high-performance Li-ion battery anode. J. Electroanal. Chem. 2022, 922, 116789. [Google Scholar] [CrossRef]
- Lee, K.T.; Jung, Y.S.; Kwon, J.Y.; Kim, J.H.; Oh, S.M. Role of electrochemically driven Cu nanograins in CuGa2 electrode. Chem. Mater. 2008, 20, 447–453. [Google Scholar] [CrossRef]
- Idota, Y.; Kubota, T.; Matsufuji, A.; Maekawa, Y.; Miyasaka, T. Tin-based amorphous oxide: A high-capacity lithium-ion-storage material. Science 1997, 276, 1395–1397. [Google Scholar] [CrossRef]
- Kepler, K.D.; Vauhgey, J.T.; Thackeray, M.M. Copper-tin anodes for rechargeable lithium batteries: An example of the matrix effect on an intermetallic system. J. Power Sources 1999, 81, 383–387. [Google Scholar] [CrossRef]
- Li, T.; Liu, B.; Liu, H.; Zou, J.; Ding, Y.; Xin, T.; Wang, Y. Copper and carbon co-encapsulated tin dioxide nanocrystals for high performance lithium ion batteries. J. Alloys Compd. 2019, 774, 565–572. [Google Scholar] [CrossRef]
- Zhirong, L.; Uddin, M.A.; Zhanxue, S. FT-IR and XRD analysis of natural Na-bentonite and Cu (II)-loaded Na-bentonite, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011, 79, 1013–1016. [Google Scholar] [CrossRef]
- Ruiz, A.I.; Fernández, R.; Jiménez, N.S.; Rastrero, M.R.; Regadío, M.; de Soto, I.S.; Cuevas, J. Improvement of attenuation functions of a clayey sandstone for landfill leachate containment by bentonite addition. Sci. Total Environ. 2012, 419, 81–89. [Google Scholar] [CrossRef]
- Alabarse, F.G.; Conceição, R.V.; Balzaretti, N.M.; Schenato, F.; Xavier, A.M. In-situ FTIR analyses of bentonite under high-pressure. Appl. Clay Sci. 2011, 51, 202–208. [Google Scholar] [CrossRef]
- Lidiard, A.B. Handbuch der Physik; Flugge, S., Ed.; Springer: Berlin/Heidelberg, Germany, 1957; Volume 20, pp. 246–349. [Google Scholar]
- Yang, H.L.; Zhang, B.W.; Konstantinov, K.; Wang, Y.X.; Liu, H.K.; Dou, S.X. Progress and Challenges for All-Solid-State Sodium Batteries. Adv. Energy Sustain. Res. 2021, 2, 2000057. [Google Scholar] [CrossRef]
- Tang, X.; Huang, X.; Huang, Y.; Gou, Y.; Pastore, J.; Tang, Y.; Xiong, Y.; Qian, J.; Brock, J.; Lu, J.; et al. High-performance Ga2O3 anode for lithium-ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 5519–5526. [Google Scholar] [CrossRef]
- Lu, Y.C.; Ma, C.; Alvarado, J.; Kidera, T.; Dimov, N.; Meng, Y.S.; Okada, S. Electrochemical properties of tin oxide anodes for sodium-ion batteries. J. Power Sources 2015, 284, 287–295. [Google Scholar] [CrossRef]
- Kim, I.T.; Allcorn, E.; Manthiram, A. Cu6Sn5–TiC–C nanocomposite anodes for high-performance sodium-ion batteries. J. Power Sources 2015, 281, 11–17. [Google Scholar] [CrossRef]
- Sanati, A.L.; Lopes, P.A.; Chambel, A.; Silva, A.F.; Oliveira, D.M.; Majidi, C.; Almeida, A.T.d.; Tavakoli, M. Recyclable liquid metal-graphene supercapacitor. Chem. Eng. J. 2024, 479, 147894. [Google Scholar] [CrossRef]
Electrode | Average Capacity (mAh/g) | Cyclic Stability (%) |
---|---|---|
Ga | 32 | 100 |
Ga–10Sn | 111 | 75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, K.-J.; Hung, F.-Y.; Liao, H.-C. Jet-Printable, Low-Melting-Temperature Ga–xSn Eutectic Composites: Application in All-Solid-State Batteries. Materials 2024, 17, 995. https://doi.org/10.3390/ma17050995
Chen K-J, Hung F-Y, Liao H-C. Jet-Printable, Low-Melting-Temperature Ga–xSn Eutectic Composites: Application in All-Solid-State Batteries. Materials. 2024; 17(5):995. https://doi.org/10.3390/ma17050995
Chicago/Turabian StyleChen, Kuan-Jen, Fei-Yi Hung, and Hsien-Ching Liao. 2024. "Jet-Printable, Low-Melting-Temperature Ga–xSn Eutectic Composites: Application in All-Solid-State Batteries" Materials 17, no. 5: 995. https://doi.org/10.3390/ma17050995
APA StyleChen, K. -J., Hung, F. -Y., & Liao, H. -C. (2024). Jet-Printable, Low-Melting-Temperature Ga–xSn Eutectic Composites: Application in All-Solid-State Batteries. Materials, 17(5), 995. https://doi.org/10.3390/ma17050995