Study on the Mechanical Properties of 3D-Printed Sand Mold Specimens with Complex Hollow Structures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Method for Mechanical Properties of Sand Mold
2.2. Design of Hollow Sand Mold Test Specimens
2.3. Three-Dimensional Printing of Hollow Sand Specimens
3. Results and Discussion
3.1. Compressive Strength of Hollow Sand Mold
3.2. Bending Strength of Hollow Sand Mold
3.3. High-Temperature Residual Tensile Strength Analysis of 3D-Printed Hollow Sand
3.4. Influence of Sand Mold Concession on Castings
4. Conclusions
- The multi-layer shell hollow sand structure has higher compressive, high-temperature residual tensile, and bending strengths compared to the truss structure with similar hollow volume fractions. It has the lowest ratio strength decrease over hollow volume fraction. Compared to dense structures, the low strengths provide the hollow structure with improved retractability, which is beneficial as it helps reduce residual stress and avoid cracks in castings.
- The compression failure of the hollow structure results in surface fractures, while the dense sand mold undergoes penetrating fractures. Consequently, the hollow structure is less prone to penetration cracks. The I-beam-shaped casting test results indicate a significant crack in the dense sand mold and a local crack in the truss hollow sand mold, whereas there was no crack in the multi-layer shell hollow sand mold.
- The I-beam-shaped casting experiments confirmed the decrease in residual stress in the castings with a hollow sand mold.
- The high-temperature residual tensile strength of a dense sand specimen decreases significantly with temperature compared to that of hollow sand specimens. The insulation effects of hollow structures can retard heat transfer in hollow sand molds, which helps in maintaining temperature at a low level and preserving the initial strength of the outer shell.
- Compared to dense and truss hollow molds, the multi-layer shell hollow sand structure has comprehensive advantages in that it improves retractability while maintaining strength relatively well, reduces the residual stress, and helps avoid cracks in the castings and itself. It is suggested for future applications in casting production.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Muslim, M.; Asma, P.; Didier, T. Application of Stereolithography Based 3D Printing Technology in Investment Casting. Micromachines 2020, 11, 946. [Google Scholar] [CrossRef]
- Sadarang, J.; Nayak, R.K.; Panigrahi, I. Challenges and Future Prospective of Alternative Materials to Silica Sand for Green Sand Mould Casting: A Review. Trans. Indian Inst. Met. 2021, 74, 2939–2952. [Google Scholar] [CrossRef]
- Oguntuyi, S.D.; Nyembwe, K.; Shongwe, M.B.; Mojisola, T. Challenges and recent progress on the application of rapid sand casting for part production: A review. Int. J. Adv. Manuf. Technol. 2023, 126, 891–906. [Google Scholar] [CrossRef]
- Adeleke, A.A.; Oki, M.; Anyim, K.I.; Ikubanni, P.P.; Adediran, A.A.; Balogun, A.A.; Orhadahwe, T.A.; Omoniyi, O.P.; Olabisi, S.A.; Akinlabi, T.E. Recent Development in Casting Technology: A Pragmatic Review. Rev. Compos. Mater. Av. 2022, 32, 91–102. [Google Scholar] [CrossRef]
- Kim, D.H.; Lee, J.; Bae, J.; Park, S.; Choi, J.; Lee, J.H. Mechanical analysis of ceramic/polymer composite with mesh-type lightweight design using binder-jet 3D printing. Materials 2018, 11, 1941. [Google Scholar] [CrossRef] [PubMed]
- Mevissen, F.; Meo, M. A Review of NDT/Structural Health Monitoring Techniques for Hot Gas Components in Gas Turbines. Sensors 2019, 19, 711. [Google Scholar] [CrossRef] [PubMed]
- Gao, G.L.; Zhang, W.K.; Du, Z.M.; Liu, Q.Y.; Su, Y.Q.; Shi, D.Q. Investigation of selected parameters effect on 3D printed sand mold properties through Taguchi method. Rapid Prototyp. J. 2021, 27, 627–635. [Google Scholar] [CrossRef]
- Coniglio, N.; Sivarupan, T.; El Mansori, M. Investigation of process parameter effect on anisotropic properties of 3D printed sand molds. Int. J. Adv. Manuf. Technol. 2018, 94, 2175–2185. [Google Scholar] [CrossRef]
- Dana, H.R.; El Mansori, M. Mechanical characterisation of anisotropic silica sand/furan resin compound induced by binder jet 3D additive manufacturing technology. Ceram. Int. 2020, 46, 17876–17880. [Google Scholar] [CrossRef]
- Bobrowski, A.; Kaczmarska, K.; Drozynski, D.; Wozniak, F.; Deren, M.; Grabowska, B.; Zymankowska-Kumon, S.; Szucki, M. 3D printed (binder jetting) furan molding and core sands-thermal deformation, mechanical and technological properties. Materials 2023, 16, 3339. [Google Scholar] [CrossRef] [PubMed]
- Son, H.J.; Jang, S.; Hyeon, H.J.; Lee, H.J.; Yang, J.J.; Park, B.Y.; Gwak, S.S.; Jang, S.W.; Bae, C.J. Mechanical integrity and erosion resistance of 3D sand printing materials. Mater. Des. 2023, 233, 112204. [Google Scholar] [CrossRef]
- Primkulov, B.; Chalaturnyk, J.; Chalaturnyk, R.; Narvaez, G.Z. 3D Printed Sandstone Strength: Curing of Furfuryl Alcohol Resin-Based Sandstones. 3D Print Addit. Manuf. 2017, 4, 149–155. [Google Scholar] [CrossRef]
- Mitra, S.; de Castro, A.R.; El Mansori, M. The effect of ageing process on three-point bending strength and permeability of 3D printed sand molds. Int. J. Adv. Manuf. Technol. 2018, 97, 1241–1251. [Google Scholar] [CrossRef]
- Martinez, D.; Bate, C.; Manogharan, G. Towards Functionally Graded Sand Molds for Metal Casting: Engineering Thermo-mechanical Properties Using 3D Sand Printing. JOM 2020, 72, 1340–1354. [Google Scholar] [CrossRef]
- Sivarupan, T.; Mansori, E.M.; Coniglio, N.; Dargusch, M. Effect of process parameters on flexure strength and gas permeability of 3D printed sand molds. J. Manuf. Process. 2020, 54, 420–437. [Google Scholar] [CrossRef]
- Sivarupan, T.; Mansori, E.M.; Daly, K.; Mavrogordato, M.N.; Pierron, F. Characterisation of 3D printed sand moulds using micro-focus X-ray computed tomography. Rapid Prototyp. J. 2019, 25, 404–416. [Google Scholar] [CrossRef]
- Guo, Z.; Shan, Z.D.; Liu, F.; Du, D.; Zhao, M.M. Experimental investigation on the performance and mesostructure of multi-material composite 3D-printed sand mold. Rapid Prototyp. J. 2020, 26, 309–318. [Google Scholar] [CrossRef]
- Wang, X.L.; Wu, Q.H.; Huang, Y.H.; Li, N.; Wu, X.Z.; Chen, X.M.; Wang, J.W.; Jing, T.; Huang, T.Y.; Kang, J.W. Study on the Gas Release of 3D-Printed Furan Resin Sand Core during the Casting Process. Materials 2023, 16, 4152. [Google Scholar] [CrossRef] [PubMed]
- Shangguan, H.L.; Kang, J.W.; Deng, C.Y.; Hu, Y.Y.; Huang, T. 3D-printed shell-truss sand mold for aluminum castings. J. Mater. Process. Technol. 2017, 250, 247–253. [Google Scholar] [CrossRef]
- Xu, J.Y.; Kang, J.W.; Mao, W.M. Effect of double-layer-shell sand mold on the residual stress of casting and itself crack tendency. Mater. Lett. 2022, 335, 133752. [Google Scholar] [CrossRef]
No. | Hollow Type | Outer Shell Thickness (t) (mm) | Truss Cross-Section Size (d) (mm) | Hollow Volume Fraction (%) | |
---|---|---|---|---|---|
Compressive strength | C1 | Dense | - | - | 0 |
C2 | Truss | 3 | 2 × 2 | 49 | |
C3 | Truss | 5 | 2 × 2 | 33 | |
C4 | Truss | 3 | 4 × 4 | 21 | |
C5 | Multi-layer | 3 | 2 × 2 | 32 | |
Bending strength | B1 | Dense | - | - | 0 |
B2 | Truss | 3 | 2 × 2 | 42 | |
B3 | Truss | 5 | 2 × 2 | 21 | |
B4 | Truss | 3 | 4 × 4 | 15 | |
B5 | Multi-layer | 3 | 2 × 2 | 26 | |
High-temperature residual tensile strength | T1 | Dense | - | - | 0 |
T2 | Truss | 3 | 2 × 2 | 51 | |
T3 | Truss | 5 | 2 × 2 | 24 | |
T4 | Truss | 3 | 4 × 4 | 28 | |
T5 | Multi-layer | 3 | 2 × 2 | 26 |
RS | ||||
---|---|---|---|---|
No. 3 | No. 4 | No. 5 | ||
Compressive strength | 1.64 | 2.73 | 1.74 | |
Bending strength | 1.12 | 1.96 | 1.21 | |
High-temperature residual Tensile strength | 298 K | 1.75 | 1.52 | 1.40 |
373 K | 1.84 | 1.54 | 1.48 | |
473 K | 1.78 | 1.42 | 1.42 | |
573 K | 1.84 | 1.51 | 1.47 | |
673 K | 2.15 | 1.67 | 1.80 | |
773 K | 1.88 | 1.61 | 1.54 |
No. | Thin Rod Length (mm) | Linear Contraction (mm) | Residual Stress (MPa) |
---|---|---|---|
P1DN | 148.50 | −1.50 | 43.65 |
P2TN | 148.20 | −1.80 | 28.15 |
P3SN | 148.25 | −1.75 | 9.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Kang, J.; Hu, Y.; Shen, H.; Mao, W. Study on the Mechanical Properties of 3D-Printed Sand Mold Specimens with Complex Hollow Structures. Materials 2024, 17, 996. https://doi.org/10.3390/ma17050996
Xu J, Kang J, Hu Y, Shen H, Mao W. Study on the Mechanical Properties of 3D-Printed Sand Mold Specimens with Complex Hollow Structures. Materials. 2024; 17(5):996. https://doi.org/10.3390/ma17050996
Chicago/Turabian StyleXu, Jingying, Jinwu Kang, Yongkang Hu, Houfa Shen, and Weimin Mao. 2024. "Study on the Mechanical Properties of 3D-Printed Sand Mold Specimens with Complex Hollow Structures" Materials 17, no. 5: 996. https://doi.org/10.3390/ma17050996
APA StyleXu, J., Kang, J., Hu, Y., Shen, H., & Mao, W. (2024). Study on the Mechanical Properties of 3D-Printed Sand Mold Specimens with Complex Hollow Structures. Materials, 17(5), 996. https://doi.org/10.3390/ma17050996