Formation of Natural Magnesium Silica Hydrate (M-S-H) and Magnesium Alumina Silica Hydrate (M-A-S-H) Cement
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Geological Setting and Climatic Conditions
3.2. Field and Microtextural Observations
3.3. Composition of the Cement
3.4. The Composition of the Weathering Rinds
3.5. Composition of Till and Tillite
4. Discussion
4.1. Formation of Natural M-S-H and M-A-S-H Cement
4.2. Rate of Reaction
4.3. Durability and Strength of M-A-S-H
4.4. The Magnesium Budgets
4.5. Serpentinization and Weathering
4.6. The M-(A)-S-H Cemented Till—A New Type of Duricrust
4.7. Formation of Natural M-(A)-S-H Cement as a Geological Process
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schrivener, K.L.; John, V.M.; Gartner, E.M. Eco-efficient cement: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cem. Concr. Res. 2018, 114, 2–26. [Google Scholar] [CrossRef]
- Xi, F.; Davis, S.J.; Ciais, P.; Crawford-Brown, D.; Guan, D.; Pade, C.; Shi, T.; Syddall, M.; Lv, J.; Ji, L.; et al. Substantial global carbon uptake by cement carbonation. Nat. Geosci. Lett. 2016, 9, 880–883. [Google Scholar] [CrossRef]
- Walling, S.A.; Provis, J.L. Magnesia-based cements: A journey of 150 years, and cements for the future? Chem. Rev. 2016, 116, 4170–4204. [Google Scholar] [CrossRef] [PubMed]
- Gartner, E.; Sui, T. Alternative cement clinkers. Cem. Concr. Res. 2018, 114, 27–39. [Google Scholar] [CrossRef]
- Beinlich, A.; Austrheim, H. In situ sequestration of atmospheric CO2 at low temperature and surface cracking of serpentinized peridotite in mineshafts. Chem. Geol. 2012, 332–333, 32–44. [Google Scholar] [CrossRef]
- Økland, I.; Huang, S.; Dahle, H.; Thorseth, I.H.; Pedersen, R.B. Low temperature alteration of serpentinized ultramafic rok and implication for microbial life. Chem. Geol. 2012, 318–319, 75–87. [Google Scholar] [CrossRef]
- Wilson, S.A.; Dipple, G.M.; Power, I.M.; Thom, J.M.; Andersen, R.G.; Raudsepp, M.; Gabites, J.E.; Southam, G. Carbon dioxide fixation within mine wastes of ultramafic-hosted ore deposits: Examples from the Clinton Creek and Cassiar crysotille deposits, Canada. Econ. Geol. 2009, 104, 95–112. [Google Scholar] [CrossRef]
- Power, I.M.; Wilson, S.A.; Dipple, G.M. Serpentine carbonation for CO2 sequestration. Elements 2013, 9, 115–121. [Google Scholar] [CrossRef]
- Zhang, T.; Vandeperre, L.J.; Cheeseman, C.R. Formation of magnesium silicate hydrate (M-S-H) cement pastes using sodium hexametaphosphate. Cem. Concr. Res. 2014, 65, 8–14. [Google Scholar] [CrossRef]
- Jenni, A.; Mäder, U.; Lerouge, C.; Gaboreau, S.; Schwyn, B. In situ interaction between different concretes and Opalinus clay. Phys. Chem. Earth Parts A/B/C 2014, 70, 71–83. [Google Scholar] [CrossRef]
- Mäder, U.; Jenni, A.; Lerouge, C.; Gaboreau, S.; Miyoshi, S.; Kimura, Y.; Cloet, V.; Fukaya, M.; Claret, F.; Otaka, T.; et al. 5-year chemico-physical evolution of concrete-claystone interfaces. Swiss J. Geosci. 2017, 110, 307–327. [Google Scholar] [CrossRef]
- De Ruiter, L.; Austrheim, H. Formation of magnesium silicate hydrate cement in nature. J. Geol. Soc. Lond. 2018, 175, 308–320. [Google Scholar] [CrossRef]
- Nishiki, Y.; Sato, T.; Katoh, T.; Otake, T.; Kikuchi, R. Percipitation of magnesium silicatehydrates in natural alkaline surface environments. Clay Sci. 2020, 24, 1–13. [Google Scholar]
- Benard, E.; Lothenbach, B.; Cau-Dit-Coumes, C.; Pochard, I.; Rentsch, D. Alumium Incorporation intomagnesium silicate hydrate (M-S-H) Cem. Concr. Res. 2020, 128, 105931. [Google Scholar] [CrossRef]
- Benard, E.; Lothenbach, B.; German, A.; Rentsch, D.; Winnefeld, F. Effect of aluminate and carbonate in magnesium silicate cement. Cem. Concr. Compos. 2023, 139, 105010. [Google Scholar] [CrossRef]
- Mariske, M.R.; Debus, C.; Di Lorenzo, F.; Bernard, E.; Churakov, S.V.; Ruiz-Agudo, C. Immobilization of (Aqueous) Cations in Low pH M-S-H Cement. Appl. Sci. 2021, 11, 2968. [Google Scholar] [CrossRef]
- Zhang, T.; Cheeseman, C.R.; Vandeperre, L.J. Development of low pH cement systems forming magnesium silicate hydrate (M-S-H). Cem. Concr. Res. 2011, 41, 439–442. [Google Scholar] [CrossRef]
- Bernard, E. Research progress on magnesium silicate hydrate phases and future opportunities. RILEM Tech. Lett. 2022, 7, 47–57. [Google Scholar] [CrossRef]
- Zhang, T.; Li, T.; Zou, Y.; Li, S.; Zhi, Y.; Cheeseman, C.R. Immobillization of radionuclide 133Cs by magnesium silicate hydrate cement. Materials 2012, 13, 146. [Google Scholar] [CrossRef]
- Brew, D.R.M.; Glasser, F.P. Synthesis and characterization of magnesium silicate hydrate gels. Cem. Concr. Res. 2005, 35, 85–98. [Google Scholar] [CrossRef]
- Roosz, C.; Grangeon, S.; Blanc, P.; Montoullout, V.; Lothenbach, B.; Henocq, P.; Giffaut, E.; Vieillard, P.; Gaboreau, S. Crystal structure of magnesium silicate hydrates (M-S-H): The relation with 2:1 Mg-Si phyllosilicates. Cem. Concr. Res. 2015, 73, 228–237. [Google Scholar] [CrossRef]
- Zhang, Y.; Chang, J.; Zhao, J.; Fang, Y. Nanostructural characterization of Al(OH)3 formed during the hydration of calcium sulfoaluminate cement. J. Am. Ceram. Soc. 2018, 101, 4262–4274. [Google Scholar] [CrossRef]
- De Ruiter, L.; Gunnæs, A.E.; Dysthe, D.K.; Austrheim, H. Quartz dissolution associated with magnesium silicate hydrate cement precipitation. Solid Earth 2021, 12, 389–404. [Google Scholar] [CrossRef]
- Hu, D. The Characterization of the Cementing Materials in the Ultramafic Tillites from Feragen and Leka, Norway. Master’s Thesis, University of Oslo, Oslo, Norway, 2015; p. 124. [Google Scholar]
- Pouchou, J.L.; Pichoir, F. Quantitative Analysis of Homogeneous or Stratified Microvolumes Applying the Model PAP; Heinrich, K.F.J., Newbury, D.E., Eds.; Springer: Boston MA, USA, 1991. [Google Scholar]
- Moore, A.C.; Hultin, I. Petrology, mineralogy, and origin of the Feragen ultramafic body, Sor-Trondelag, Norway. Nor. Geol. Tidsskrift. 1980, 60, 235–254. [Google Scholar]
- Prestvik, T. The Caledonian ophiolite complex of Leka, central Norway. In Ophiolites; Panayiotou, A., Ed.; Geological Survey Department: Nicosia, Cyprus, 1980; pp. 555–556. [Google Scholar]
- Iyer, K.; Austrheim, H.; John, T.; Jamtveit, B. Serpentinization of the oceanic lithosphere and some geochemical consequences: Constraints from the Leka Ophiolite Complex, Norway. Geochem. Geol. 2008, 249, 66–90. [Google Scholar] [CrossRef]
- Bøe, P.; Prestvik, T. A serpentinite conglomerate on the Island of Leka, Nord-Trøndelag. Nor. Geol. Tidsskr. 1974, 54, 117–121. [Google Scholar]
- Ulven, O.I.; Beinlich, A.; Hövelmann, J.; Austrheim, H.; Jamtveit, B. Subarctic physicochemical weathering of serpentinized peridotite. Earth Planet. Sci. Lett. 2017, 468, 11–26. [Google Scholar] [CrossRef]
- Beinlich, A.; Austrheim, H.; Mavromatis, V.; Grguric, B.; Putnis, C.V.; Putnis, A. Peridotite weathering is the missing ingredient of Earth’s continental crust composition. Nat. Com. 2018, 9, 634. [Google Scholar] [CrossRef] [PubMed]
- Li, Q. Chemical Composition and Microstructure of Hydration Products of Hardened White Portland Cement Pastes Containing Admixtures. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2015, 30, 758–767. [Google Scholar] [CrossRef]
- Aginam, C.; Onodagu, P.D.; Kingsley, O.O. Effects of Percentage Composition of Essential Chemicals in Portland Limestone Cement on the Strength and Workability of Concrete. J. Eng. Appl. Sci. 2023, 2, 368–375. [Google Scholar]
- Li, Y.; Liu, J.; Jin, C.; Lin, H.; Shen, J. Experimental Study and Mechanism Analysis of Functional Nanocrystalline Cellulose to Improve the Electromagnetic Transmission Performance of Ordinary Portland Cement. Cem. Concr. Compos. 2023, 143, 105272. [Google Scholar] [CrossRef]
- Li, X.; Caes, S.; Pardoen, T.; Schutter, G.D.; Hauffman, T.; Kursten, B. Inhibition Effect of Lithium Salts on the Corrosion of AA1100 Aluminium Alloy in Ordinary Portland Cement Pastes. Corros. Sci. 2023, 221, 1. [Google Scholar] [CrossRef]
- Gleeson, S.A.; Herrington, R.J.; Durango, J.; Velasquez, C.A.; Koll, G. The mineralogy and geochemistry of the Cerro Matoso, S.A. Ni laterite deposit, Montelibano, Colombia. Econ. Geol. 2004, 99, 1197–1213. [Google Scholar] [CrossRef]
- Goldschmidt, V.M. Grundlagen der quantitativen geochemie. Forschritte Der Mineral. Kryst. Petrol. 1933, 17, 112. [Google Scholar]
- Goldschmidt, V.M. Geochemistry; Oxford University Press: Oxford, UK, 1958. [Google Scholar]
- Canil, D.; Lacourse, T. An estimate for the bulk composition of juvenile upper continental crust derived from glacial till in the North American Cordillera. Chem. Geol. 2011, 284, 229–239. [Google Scholar] [CrossRef]
- Gaschnig, R.M.; Rudnik, R.L.; McDonough, W.F.; Kaufman, A.J.; Valley, J.W.; Hu, Z.; Gao, S.; Beck, M.L. Compositional evolution of the upper continental crust through time, as constrained by ancient glacial diamictites. Geochim. Cosmochim. Acta 2016, 186, 316–343. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell: Oxford, UK, 1985; pp. 1–312. [Google Scholar]
- Hawkings, J.R.; Wadham, J.L.; Benning, L.G.; Hendry, K.R.; Tranter, M.; Tedstone, A.; Nienow, P.; Raiswell, R. Ice sheets as a missing source of silica to the polar oceans. Nat. Com. 2017, 8, 4198. [Google Scholar] [CrossRef] [PubMed]
- Lothenbach, B.; Nied, D.; L’Hopital, E.; Achiedo, G.; Dauzeres, A. Magnesium and calcium silicate hydrates. Cem. Concr. Res. 2015, 77, 60–68. [Google Scholar] [CrossRef]
- Nied, D.; Enemark-Rasmussen, K.; L’Hopital, E.; Skibsted, J. Properties of magnesium silicate. hydrates(M-S-H) Cem. Concr. Res. 2015, 79, 323–332. [Google Scholar] [CrossRef]
- Templeton, A.S.; Ellison, E.T. Formation and loss of metastable brucite: Does Fe(II)-bearing brucite support microbial activity in serpentinizing ecosystems? Philos. Trans. R. Soc. 2020, A378, 20180423. [Google Scholar] [CrossRef]
- Xu, X.; Heng, L.; Zhao, X.; Ma, J.; Lin, L.; Jiang, L. Multiscale bio-inspired honeycomb structure material with high mechanical strength and low density. J. Mater. Chem. 2012, 22, 10883–10888. [Google Scholar] [CrossRef]
- Zhu, G.; Jing, H.; Wu, J.; Chen, S.; Gao, Y.; Yin, Q.; Yu, Z.; Qiao, Y.; Ren, J. Study on heat transfer characteristics of cement-based honeycomb structures basedon infrared imaging. J. Build. Eng. 2023, 68, 106134. [Google Scholar] [CrossRef]
- Bernard, E.; Nguyen, H.; Kawashim, S.; Lothenbach, B.; Manzano, H.; Provis, J.; Scott, A.; Uluer, C.; Winnefeld, F.; Kinnunen, P. MgO-based cements—Current status and opportunities. RILEM Tech. Lett. 2023, 8, 65–78. [Google Scholar] [CrossRef]
- Unluer, C. Carbon dioxide sequestration in magnesium-based binders. In Carbon Dioxide Sequestration in Cementitious Constriuction Materials; Pacheco-Torgal, F., Shi, C., Sanchez, A.P., Eds.; Woodhead Publishing: Cambridge, UK, 2018; pp. 129–173. [Google Scholar]
- Hövelmann, J.; Putnis, C.; Ruiz-Agudo, E.; Austrheim, H. Direct Nanoscale Observations of CO2 Sequestration during Brucite (Mg (OH)2) dissolution. Environ. Sci. Technol. 2012, 46, 5253–5260. [Google Scholar] [CrossRef] [PubMed]
- Scott, A.; Oze, C.; Shah, V.; Yang, N.; Shanks, B.; Cheeseman, C.; Marshall, A.; Watson, M. Transformation of abundant magnesium silicate minerals for enhanced CO2 sequestration. Commun. Earth Environ. 2021, 2, 25. [Google Scholar] [CrossRef]
- Barnes, L.; O’Neil, J.R. The relationship between fluids in some fresh alpine-type ultramafics and possible modern serpentinization, Western United States. Geol. Soc. Am. Bull. 1969, 80, 1947. [Google Scholar] [CrossRef]
- Boschetti, T.; Toscani, L. Springs and streams of the Taro-Ceno Valleys (Northern Appennini, Italy): Reaction path modeling of waters interacting with serpentinized ultramafic rocks. Chem. Geol. 2008, 257, 76–91. [Google Scholar] [CrossRef]
- Seeger, M.; Otto, W.; Flick, W. Magnesium Compounds. In Ullmann’s Encyclopedia of Industrial Chemistry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011. [Google Scholar] [CrossRef]
- Goldich, S.S. A study of rock weathering. J. Geol. 1938, 46, 17–58. [Google Scholar] [CrossRef]
- Lamplugh, G.W. Calcrete. Geol. Mag. 1902, 9, 575. [Google Scholar] [CrossRef]
- Nash, D.J.; Shaw, P. Silica and carbonate relationships in silicret-calcrete intergrade duricrusts from the Kalahari of Botswana and Namibia. J. Afr. Earth Sci. 1998, 27, 11–25. [Google Scholar] [CrossRef]
- Nash, D.J.; McLaren, S.J.; Webb, J.A. Petrology, geochemistry and environmental significance of silicrete-calcrete intergrade duricrust at Kang Pan and Tswaane, Central Kalahari, Botswana. Earth Surf. Process. Landf. 2004, 29, 1559–1586. [Google Scholar] [CrossRef]
- Lewinger, W.; Comin, F.; Matthews, M.; Saaj, C. Earth analogue testing and analysis of Martian duricrust properties. Acta Astronaut 2018, 152, 567–579. [Google Scholar] [CrossRef]
- Clark, B.C.; Baird, A.K.; Weldon, R.J.; Tusaki, D.M.; Schnabel, L.; Candelaria, M.P. Chemical composition of Martian fines. J. Geophys. Res. Solid Earth 1982, B12, 10059–10067. [Google Scholar] [CrossRef]
- Holland, H.D. The Chemical Evolution of the Atmosphere and Ocean; Princeton University Press: Princeton, NJ, USA, 1984. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Austrheim, H.; Hu, D.; Ulven, O.I.; Andersen, N.H. Formation of Natural Magnesium Silica Hydrate (M-S-H) and Magnesium Alumina Silica Hydrate (M-A-S-H) Cement. Materials 2024, 17, 994. https://doi.org/10.3390/ma17050994
Austrheim H, Hu D, Ulven OI, Andersen NH. Formation of Natural Magnesium Silica Hydrate (M-S-H) and Magnesium Alumina Silica Hydrate (M-A-S-H) Cement. Materials. 2024; 17(5):994. https://doi.org/10.3390/ma17050994
Chicago/Turabian StyleAustrheim, Håkon, Depan Hu, Ole Ivar Ulven, and Niels H. Andersen. 2024. "Formation of Natural Magnesium Silica Hydrate (M-S-H) and Magnesium Alumina Silica Hydrate (M-A-S-H) Cement" Materials 17, no. 5: 994. https://doi.org/10.3390/ma17050994
APA StyleAustrheim, H., Hu, D., Ulven, O. I., & Andersen, N. H. (2024). Formation of Natural Magnesium Silica Hydrate (M-S-H) and Magnesium Alumina Silica Hydrate (M-A-S-H) Cement. Materials, 17(5), 994. https://doi.org/10.3390/ma17050994