An Overview of the Non-Energetic Valorization Possibilities of Plastic Waste via Thermochemical Processes
Abstract
:1. Introduction
2. Challenges Facing Plastic Recycling
2.1. Quality of Plastic Waste
2.2. Purity
3. Alternative Plastic Waste Treatment Processes
3.1. Solvent-Based Processes
3.2. Depolymerization Processes
3.2.1. Solvolysis
3.2.2. Pyrolysis and Gasification
Liquid-Oriented Processes
Carbonaceous Materials and Gaseous Product-Oriented Processes
- Gasification
- Combined Carbonaceous Materials and Hydrogen-Production-Oriented Processes
4. Possible Uses of Plastic Waste Pyrolysis Products in Industry
4.1. Energetic Applications
4.2. Monomer Production
4.3. Benzene, Toluene, and Xylene (BTX)
4.4. Hydrocarbon-Based Lubricants
4.5. Phase Change Materials
4.6. Refrigerants
5. Challenges and Future Prospects
5.1. Thermochemical Processing of Thermoplastics
5.2. Thermochemical Processing of Fiber-Filled/Reinforced Plastics
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Servera-Francés, D.; Fuentes-Blasco, M.; Piqueras-Tomás, L. The Importance of Sustainable Practices in Value Creation and Consumers’ Commitment with Companies’ Commercial Format. Sustainability 2020, 12, 9852. [Google Scholar] [CrossRef]
- Statista. Annual Production of Plastics Worldwide from 1950 to 2021. Statista. Available online: https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950/ (accessed on 22 December 2023).
- Kumar, S.; Singh, E.; Mishra, R.; Kumar, A.; Caucci, S. Utilization of Plastic Wastes for Sustainable Environmental Management: A Review. ChemSusChem 2021, 14, 3985–4006. [Google Scholar] [CrossRef]
- Statista. Global Thermoplastic Production by Type 2050. Statista. Available online: https://www.statista.com/statistics/1192886/thermoplastics-production-volume-by-type-globally/ (accessed on 22 December 2023).
- Krawczak, P. Towards a circular, low-carbon emission plastics industry. Express Polym. Lett. 2022, 16, 901. [Google Scholar] [CrossRef]
- Statista. Global Plastic Waste Generation by Application. Statista. Available online: https://www.statista.com/statistics/1339124/global-plastic-waste-generation-by-application/ (accessed on 22 December 2023).
- PlasticsEurope. ReShaping Plastics: Pathways to a Circular, Climate Neutral Plastics System in Europe. Available online: https://plasticseurope.org/wp-content/uploads/2022/04/SYSTEMIQ-ReShapingPlastics-April2022.pdf (accessed on 15 November 2023).
- PlasticsEurope. The Plastics Transition. Available online: https://plasticseurope.org/wp-content/uploads/2023/11/1814354_Roadmap-copychange_112023.pdf (accessed on 15 November 2023).
- Choi, J.; Yang, I.; Kim, S.; Cho, S.Y.; Lee, S. Upcycling Plastic Waste into High Value-Added Carbonaceous Materials. Macromol. Rapid Commun. 2022, 43, 2100467. [Google Scholar] [CrossRef]
- Klotz, M.; Haupt, M.; Hellweg, S. Potentials and limits of mechanical plastic recycling. J. Ind. Ecol. 2023, 27, 1043–1059. [Google Scholar] [CrossRef]
- OECD. Global Plastics Outlook: Economic Drivers, Environmental Impacts and Policy Options; Organisation for Economic Co-operation and Development: Paris, France, 2022; Available online: https://www.oecd-ilibrary.org/environment/global-plastics-outlook_de747aef-en (accessed on 22 December 2023).
- Schyns, Z.O.G.; Shaver, M.P. Mechanical Recycling of Packaging Plastics: A Review. Macromol. Rapid Commun. 2021, 42, 2000415. [Google Scholar] [CrossRef] [PubMed]
- European Parliament. The Environmental Impacts of Plastics and Micro-Plastics Use, Waste and Pollution: EU and National Measures|Think Tank|European Parliament. Available online: https://www.europarl.europa.eu/thinktank/en/document/IPOL_STU(2020)658279 (accessed on 22 December 2023).
- Cadogan, D.F.; Howick, C.J. Plasticizers. In Kirk-Othmer Encyclopedia of Chemical Technology; WILEY Online Library: Hoboken, NJ, USA, 2000. [Google Scholar] [CrossRef]
- Bråte, I.; Allan, I.; Thomas, K.; Halsband, C. Report Made for the Norwegian Environment Agency: Microplastics in Marine Environments; Occurrence, Distribution and Effects. Akvaplan Niva. Available online: https://www.researchgate.net/publication/273089847_Report_made_for_the_Norwegian_Environment_Agency_Microplastics_in_marine_environments_Occurrence_distribution_and_effects (accessed on 20 October 2023).
- Da Costa, J.; da Costa Duarte, A. Microplastics—Occurrence, Fate and Behaviour in the Environment. Compr. Anal. Chem. 2016, 75, 1–24. [Google Scholar] [CrossRef]
- Li, J.; Hu, J.; Zhou, Y.; Zhang, L.; Ge, Z.; Wang, X.; Xu, W. β-Cyclodextrin-Stabilized Au Nanoparticles for the Detection of Butyl Benzyl Phthalate. ACS Appl. Nano Mater. 2019, 2, 2743–2751. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Q.; Yalikun, N.; Wang, H.; Wang, C.; Jiang, H. A comprehensive review of separation technologies for waste plastics in urban mine. Resour. Conserv. Recycl. 2023, 197, 107087. [Google Scholar] [CrossRef]
- Serranti, S.; Bonifazi, G. Techniques for separation of plastic wastes. In Use of Recycled Plastics in Eco-efficient Concrete; Elsevier: Amsterdam, The Netherlands, 2019; pp. 9–37. ISBN 978-0-08-102676-2. [Google Scholar]
- Volk, R.; Stallkamp, C.; Steins, J.J.; Yogish, S.P.; Müller, R.C.; Stapf, D.; Schultmann, F. Techno-economic assessment and comparison of different plastic recycling pathways: A German case study. J. Ind. Ecol. 2021, 25, 1318–1337. [Google Scholar] [CrossRef]
- Uzosike, C.C.; Yee, L.H.; Padilla, R.V. Small-Scale Mechanical Recycling of Solid Thermoplastic Wastes: A Review of PET, PEs, and PP. Energies 2023, 16, 1406. [Google Scholar] [CrossRef]
- Lange, J.-P. Managing Plastic Waste—Sorting, Recycling, Disposal, and Product Redesign. ACS Sustain. Chem. Eng. 2021, 9, 15722–15738. [Google Scholar] [CrossRef]
- SABIC-NORYLTM Resin. Available online: https://www.sabic.com/en/products/specialties/noryl-resins/noryl-resin (accessed on 22 December 2023).
- SABIC-VALOXTM FR Resins. Available online: https://www.sabic.com/en/products/polymers/polybutylene-terephthalate-pbt/valox-fr-resins (accessed on 22 December 2023).
- Aid, S.; Eddhahak, A.; Khelladi, S.; Ortega, Z.; Chaabani, S.; Tcharkhtchi, A. On the miscibility of PVDF/PMMA polymer blends: Thermodynamics, experimental and numerical investigations. Polym. Test. 2019, 73, 222–231. [Google Scholar] [CrossRef]
- Dong, H.; Zhong, J.; Isayev, A.I. Manufacturing Polypropylene (PP)/Waste EPDM Thermoplastic Elastomers Using Ultrasonically Aided Twin-Screw Extrusion. Polymers 2021, 13, 259. [Google Scholar] [CrossRef]
- Bano, S.; Iqbal, T.; Ramzan, N.; Farooq, U. Study of Surface Mechanical Characteristics of ABS/PC Blends Using Nanoindentation. Processes 2021, 9, 637. [Google Scholar] [CrossRef]
- Bärwinkel, S.; Seidel, A.; Hobeika, S.; Hufen, R.; Mörl, M.; Altstädt, V. Morphology Formation in PC/ABS Blends during Thermal Processing and the Effect of the Viscosity Ratio of Blend Partners. Materials 2016, 9, 659. [Google Scholar] [CrossRef]
- Jie, X.; Li, W.; Slocombe, D.; Gao, Y.; Banerjee, I.; Gonzalez-Cortes, S.; Yao, B.; AlMegren, H.; Alshihri, S.; Dilworth, J.; et al. Microwave-initiated catalytic deconstruction of plastic waste into hydrogen and high-value carbons. Nat. Catal. 2020, 3, 902–912. [Google Scholar] [CrossRef]
- Wyss, K.M.; Silva, K.J.; Bets, K.V.; Algozeeb, W.A.; Kittrell, C.; Teng, C.H.; Choi, C.H.; Chen, W.; Beckham, J.L.; Yakobson, B.I.; et al. Synthesis of Clean Hydrogen Gas from Waste Plastic at Zero Net Cost. Adv. Mater. 2023, 35, 2306763. [Google Scholar] [CrossRef] [PubMed]
- Ügdüler, S.; Van Geem, K.M.; Roosen, M.; Delbeke, E.I.; De Meester, S. Challenges and opportunities of solvent-based additive extraction methods for plastic recycling. Waste Manag. 2020, 104, 148–182. [Google Scholar] [CrossRef] [PubMed]
- Heudorf, U.; Mersch-Sundermann, V.; Angerer, J. Phthalates: Toxicology and exposure. Int. J. Hyg. Environ. Health 2007, 210, 623–634. [Google Scholar] [CrossRef] [PubMed]
- Hermabessiere, L.; Dehaut, A.; Paul-Pont, I.; Lacroix, C.; Jezequel, R.; Soudant, P.; Duflos, G. Occurrence and effects of plastic additives on marine environments and organisms: A review. Chemosphere 2017, 182, 781–793. [Google Scholar] [CrossRef]
- Hejmej, A.; Kotula-Balak, M.; Bilińska, B. Antiandrogenic and Estrogenic Compounds: Effect on Development and Function of Male Reproductive System. In Steroids—Clinical Aspect; Intech Open: London, UK, 2011. [Google Scholar] [CrossRef]
- McKeen, L.W. Thermoplastic Elastomers. In The Effect of Creep and Other Time Related Factors on Plastics and Elastomers; Elsevier: Amsterdam, The Netherlands, 2015; pp. 355–372. ISBN 978-0-323-35313-7. [Google Scholar] [CrossRef]
- Narain, R. Polymer Science and Nanotechnology: Fundamentals and Applications; Elsevier Science: Amsterdam, The Netherlands, 2020; ISBN 978-0-12-816806-6. [Google Scholar]
- Muguruma, H. Biosensors: Enzyme Immobilization Chemistry. In Encyclopedia of Interfacial Chemistry; Elsevier: Amsterdam, The Netherlands, 2018; pp. 64–71. ISBN 978-0-12-809894-3. [Google Scholar] [CrossRef]
- Kim, K.J.; Dhevi, M.; Lee, J.S.; Cho, Y.D.; Choe, E.K. Mechanism of glycolysis of nylon 6,6 and its model compound by ethylene glycol. Polym. Degrad. Stab. 2006, 91, 1545–1555. [Google Scholar] [CrossRef]
- Shojaei, B.; Abtahi, M.; Najafi, M. Chemical recycling of PET: A stepping-stone toward sustainability. Polym. Adv. Technol. 2020, 31, 2912–2938. [Google Scholar] [CrossRef]
- Barnard, E.; Arias, J.J.R.; Thielemans, W. Chemolytic depolymerisation of PET: A review. Green Chem. 2021, 23, 3765–3789. [Google Scholar] [CrossRef]
- Mancini, S.D.; Zanin, M. Post Consumer Pet Depolymerization by Acid Hydrolysis. Polym.-Plast. Technol. Eng. 2007, 46, 135–144. [Google Scholar] [CrossRef]
- Damayanti; Wu, H.-S. Strategic Possibility Routes of Recycled PET. Polymers 2021, 13, 1475. [Google Scholar] [CrossRef]
- Brivio, L.; Meini, S.; Sponchioni, M.; Moscatelli, D. Chemical recycling of polyethylene terephthalate (PET) to monomers: Mathematical modeling of the transesterification reaction of bis(2-hydroxyethyl) terephthalate to dimethyl terephthalate. Chem. Eng. Sci. 2024, 284, 119466. [Google Scholar] [CrossRef]
- Lin, P.-L.; Fang, H.-W.; Tseng, T.; Lee, W.-H. Effects of hydroxyapatite dosage on mechanical and biological behaviors of polylactic acid composite materials. Mater. Lett. 2007, 61, 3009–3013. [Google Scholar] [CrossRef]
- Hongthong, S.; Leese, H.S.; Allen, M.J.; Chuck, C.J. Assessing the Conversion of Various Nylon Polymers in the Hydrothermal Liquefaction of Macroalgae. Environments 2021, 8, 34. [Google Scholar] [CrossRef]
- Xayachak, T.; Haque, N.; Parthasarathy, R.; King, S.; Emami, N.; Lau, D.; Pramanik, B.K. Pyrolysis for plastic waste management: An engineering perspective. J. Environ. Chem. Eng. 2022, 10, 108865. [Google Scholar] [CrossRef]
- Daligaux, V.; Richard, R.; Manero, M.-H. Deactivation and Regeneration of Zeolite Catalysts Used in Pyrolysis of Plastic Wastes—A Process and Analytical Review. Catalysts 2021, 11, 770. [Google Scholar] [CrossRef]
- Kassargy, C.; Awad, S.; Burnens, G.; Kahine, K.; Tazerout, M. Experimental study of catalytic pyrolysis of polyethylene and polypropylene over USY zeolite and separation to gasoline and diesel-like fuels. J. Anal. Appl. Pyrolysis 2017, 127, 31–37. [Google Scholar] [CrossRef]
- Kassargy, C.; Awad, S.; Burnens, G.; Kahine, K.; Tazerout, M. Gasoline and diesel-like fuel production by continuous catalytic pyrolysis of waste polyethylene and polypropylene mixtures over USY zeolite. Fuel 2018, 224, 764–773. [Google Scholar] [CrossRef]
- Tang, S.; He, Y.; Deng, X.; Cui, X. Thermal Catalytic-Cracking Low-Density Polyethylene Waste by Metakaolin-Based Geopolymer NaA Microsphere. Molecules 2022, 27, 2557. [Google Scholar] [CrossRef] [PubMed]
- Miandad, R.; Rehan, M.; Barakat, M.A.; Aburiazaiza, A.S.; Khan, H.; Ismail, I.M.I.; Dhavamani, J.; Gardy, J.; Hassanpour, A.; Nizami, A.-S. Catalytic Pyrolysis of Plastic Waste: Moving Toward Pyrolysis Based Biorefineries. Front. Energy Res. 2019, 7, 27. [Google Scholar] [CrossRef]
- Lu, C.; Xiao, H.; Chen, X. Simple pyrolysis of polystyrene into valuable chemicals. e-Polymers 2021, 21, 428–432. [Google Scholar] [CrossRef]
- Kaminsky, W. Chemical recycling of plastics by fluidized bed pyrolysis. Fuel Commun. 2021, 8, 100023. [Google Scholar] [CrossRef]
- Greenwood, A. INSIGHT: US Agilyx Takes Big Step in Producing Naphtha, Propylene from Waste Plastics. ICIS Explore. Available online: https://www.icis.com/explore/resources/news/2018/09/27/10262364/insight-us-agilyx-takes-big-step-in-producing-naphtha-propylene-from-waste-plastics (accessed on 25 October 2023).
- Dhahak, A.; Hild, G.; Rouaud, M.; Mauviel, G.; Burkle-Vitzthum, V. Slow pyrolysis of polyethylene terephthalate: Online monitoring of gas production and quantitative analysis of waxy products. J. Anal. Appl. Pyrolysis 2019, 142, 104664. [Google Scholar] [CrossRef]
- Cheng, L.; Gu, J.; Wang, Y.; Zhang, J.; Yuan, H.; Chen, Y. Polyethylene high-pressure pyrolysis: Better product distribution and process mechanism analysis. Chem. Eng. J. 2020, 385, 123866. [Google Scholar] [CrossRef]
- Kumagai, S.; Yoshioka, T. Feedstock Recycling via Waste Plastic Pyrolysis. J. Jpn. Petrol. Inst. 2016, 59, 243–253. [Google Scholar] [CrossRef]
- Diaz-Silvarrey, L.S.; Zhang, K.; Phan, A.N. Monomer recovery through advanced pyrolysis of waste high density polyethylene (HDPE). Green Chem. 2018, 20, 1813–1823. [Google Scholar] [CrossRef]
- Cai, N.; Li, X.; Xia, S.; Sun, L.; Hu, J.; Bartocci, P.; Fantozzi, F.; Williams, P.T.; Yang, H.; Chen, H. Pyrolysis-catalysis of different waste plastics over Fe/Al2O3 catalyst: High-value hydrogen, liquid fuels, carbon nanotubes and possible reaction mechanisms. Energy Convers. Manag. 2021, 229, 113794. [Google Scholar] [CrossRef]
- Aboul-Enein, A.A.; Awadallah, A.E. Production of nanostructure carbon materials via non-oxidative thermal degradation of real polypropylene waste plastic using La2O3 supported Ni and Ni–Cu catalysts. Polym. Degrad. Stab. 2019, 167, 157–169. [Google Scholar] [CrossRef]
- Artetxe, M.; Lopez, G.; Amutio, M.; Barbarias, I.; Arregi, A.; Aguado, R.; Bilbao, J.; Olazar, M. Styrene recovery from polystyrene by flash pyrolysis in a conical spouted bed reactor. Waste Manag. 2015, 45, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Park, C.; Choi, H.; Andrew Lin, K.-Y.; Kwon, E.E.; Lee, J. COVID-19 mask waste to energy via thermochemical pathway: Effect of Co-Feeding food waste. Energy 2021, 230, 120876. [Google Scholar] [CrossRef] [PubMed]
- Chanda, M. Chemical aspects of polymer recycling. Adv. Ind. Eng. Polym. Res. 2021, 4, 133–150. [Google Scholar] [CrossRef]
- Klean Industries. Large Scale Plastics Pyrolysis System to Diesel Fuel|Cogeneration & Recycling Technology|Klean Industries. Available online: https://kleanindustries.com/waste-challenges-innovations/plastic-pyrolysis-recycling/spr-japan/ (accessed on 25 December 2023).
- IChemE. Plastics: Towards a Circular Economy. Available online: https://www.thechemicalengineer.com/features/plastics-towards-a-circular-economy/ (accessed on 25 December 2023).
- Vadxx Energy. Vadxx Energy Establishes Waste Plastic to EcoFuelTM Facility in Akron|Ohio’s Polymer Industry Resource. PolymerOhio. Available online: https://polymerohio.org/vadxx-energy-establishes-waste-plastic-ecofuel-facility-akron/ (accessed on 25 December 2023).
- Solving the Problem of Plastic Waste; Recycling Technologies: Swindon, UK; Available online: https://recyclingtechnologies.co.uk/technology/ (accessed on 25 December 2023).
- Qureshi, M.S.; Oasmaa, A.; Pihkola, H.; Deviatkin, I.; Tenhunen, A.; Mannila, J.; Minkkinen, H.; Pohjakallio, M.; Laine-Ylijoki, J. Pyrolysis of plastic waste: Opportunities and challenges. J. Anal. Appl. Pyrolysis 2020, 152, 104804. [Google Scholar] [CrossRef]
- 2015 Plastics-To-Fuel Project Developer’s Guide; Ocean Recovery Alliance. Available online: https://www.americanchemistry.com/content/download/8085/file/2015-Plastics-to-Fuel-Project-Developers-Guide.pdf (accessed on 27 February 2024).
- Shea, E. Alterra Looks to Blow the Lid Off Plastics Recycling. Alterra Energy. Available online: https://alterraenergy.com/news/alterra-looks-to-blow-the-lid-off-plastics-recycling-2/ (accessed on 25 December 2023).
- Project Susteen TCR500. Susteen Technologies. Available online: https://demoplants21.best-research.eu/projects/info/3823/8JBaZy (accessed on 27 February 2024).
- Dogu, O.; Pelucchi, M.; Van De Vijver, R.; Van Steenberge, P.H.M.; D’hooge, D.R.; Cuoci, A.; Mehl, M.; Frassoldati, A.; Faravelli, T.; Van Geem, K.M. The chemistry of chemical recycling of solid plastic waste via pyrolysis and gasification: State-of-the-art, challenges, and future directions. Prog. Energy Combust. Sci. 2021, 84, 100901. [Google Scholar] [CrossRef]
- Lopez, G.; Artetxe, M.; Amutio, M.; Alvarez, J.; Bilbao, J.; Olazar, M. Recent advances in the gasification of waste plastics. A critical overview. Renew. Sustain. Energy Rev. 2018, 82, 576–596. [Google Scholar] [CrossRef]
- Zare, A.A.D.; Yari, M. Comprehensive examination and analysis of thermodynamics in a multi-generation hydrogen, heat, and power system based on plastic waste gasification integrated biogas -fueled chemical looping combustion. Process Saf. Environ. Prot. 2024, 183, 976–991. [Google Scholar] [CrossRef]
- Saebea, D.; Ruengrit, P.; Arpornwichanop, A.; Patcharavorachot, Y. Gasification of plastic waste for synthesis gas production. Energy Rep. 2020, 6, 202–207. [Google Scholar] [CrossRef]
- Zhang, S.; Zhu, S.; Zhang, H.; Liu, X.; Xiong, Y. High quality H2-rich syngas production from pyrolysis-gasification of biomass and plastic wastes by Ni–Fe@Nanofibers/Porous carbon catalyst. Int. J. Hydrogen Energy 2019, 44, 26193–26203. [Google Scholar] [CrossRef]
- Chen, Z.; Wei, W.; Ni, B.-J.; Chen, H. Plastic wastes derived carbon materials for green energy and sustainable environmental applications. Environ. Funct. Mater. 2022, 1, 34–48. [Google Scholar] [CrossRef]
- Cai, N.; Yang, H.; Zhang, X.; Xia, S.; Yao, D.; Bartocci, P.; Fantozzi, F.; Chen, Y.; Chen, H.; Williams, P.T. Bimetallic carbon nanotube encapsulated Fe-Ni catalysts from fast pyrolysis of waste plastics and their oxygen reduction properties. Waste Manag. 2020, 109, 119–126. [Google Scholar] [CrossRef]
- Gim, H.; Park, J.H.; Choi, W.Y.; Yang, J.; Kim, D.; Lee, K.-H.; Lee, J.W. Plastic waste residue-derived boron and nitrogen co-doped porous hybrid carbon for a modified separator of a lithium sulfur battery. Electrochim. Acta 2021, 380, 138243. [Google Scholar] [CrossRef]
- Lee, G.; Eui Lee, M.; Kim, S.-S.; Joh, H.-I.; Lee, S. Efficient upcycling of polypropylene-based waste disposable masks into hard carbons for anodes in sodium ion batteries. J. Ind. Eng. Chem. 2022, 105, 268–277. [Google Scholar] [CrossRef]
- Abbas, A.; Yi, Y.M.; Saleem, F.; Jin, Z.; Veksha, A.; Yan, Q.; Lisak, G.; Lim, T.M. Multiwall carbon nanotubes derived from plastic packaging waste as a high-performance electrode material for supercapacitors. Int. J. Energy Res. 2021, 45, 19611–19622. [Google Scholar] [CrossRef]
- Yuan, X.; Lee, J.G.; Yun, H.; Deng, S.; Kim, Y.J.; Lee, J.E.; Kwak, S.K.; Lee, K.B. Solving two environmental issues simultaneously: Waste polyethylene terephthalate plastic bottle-derived microporous carbons for capturing CO2. Chem. Eng. J. 2020, 397, 125350. [Google Scholar] [CrossRef]
- Zhang, H.; Pap, S.; Taggart, M.A.; Boyd, K.G.; James, N.A.; Gibb, S.W. A review of the potential utilisation of plastic waste as adsorbent for removal of hazardous priority contaminants from aqueous environments. Environ. Pollut. 2020, 258, 113698. [Google Scholar] [CrossRef]
- Hiremath, V.; Lim, A.C.; Nagaraju, G.; Seo, J.G. Promoting Discarded Packing Waste into Value-Added 2D Porous Carbon Flakes for Multifunctional Applications. ACS Sustain. Chem. Eng. 2019, 7, 11944–11954. [Google Scholar] [CrossRef]
- Karim, A.V.; Selvaraj, A. Graphene composites in photocatalytic oxidation of aqueous organic contaminants—A state of art. Process Saf. Environ. Prot. 2021, 146, 136–160. [Google Scholar] [CrossRef]
- Zhang, S.; Hao, A.; Nguyen, N.; Oluwalowo, A.; Liu, Z.; Dessureault, Y.; Park, J.G.; Liang, R. Carbon nanotube/carbon composite fiber with improved strength and electrical conductivity via interface engineering. Carbon 2019, 144, 628–638. [Google Scholar] [CrossRef]
- Dai, L.; Karakas, O.; Cheng, Y.; Cobb, K.; Chen, P.; Ruan, R. A review on carbon materials production from plastic wastes. Chem. Eng. J. 2023, 453, 139725. [Google Scholar] [CrossRef]
- Saygin, D.; Blanco, H.; Boshell, F.; Cordonnier, J.; Rouwenhorst, K.; Lathwal, P.; Gielen, D. Ammonia Production from Clean Hydrogen and the Implications for Global Natural Gas Demand. Sustainability 2023, 15, 1623. [Google Scholar] [CrossRef]
- Saygin, D.; Gielen, D. Zero-Emission Pathway for the Global Chemical and Petrochemical Sector. Energies 2021, 14, 3772. [Google Scholar] [CrossRef]
- Polverino, P.; D’Aniello, F.; Arsie, I.; Pianese, C. Study of the energetic needs for the on-board production of Oxy-Hydrogen as fuel additive in internal combustion engines. Energy Convers. Manag. 2019, 179, 114–131. [Google Scholar] [CrossRef]
- Edwards, R.; Mahieu, V.; Griesemann, J.-C.; Larivé, J.-F.; Rickeard, D.J. Well-to-Wheels Analysis of Future Automotive Fuels and Powertrains in the European Context, Version 4a. SAE Trans. 2014, 1072–1084. [Google Scholar] [CrossRef]
- Olah, G.A.; Molnár, Á. Hydrocarbon Chemistry, 1st ed.; Wiley: Hoboken, NJ, USA, 2003; ISBN 978-0-471-41782-8. [Google Scholar] [CrossRef]
- The Future of Petrochemicals—Analysis. IEA. Available online: https://www.iea.org/reports/the-future-of-petrochemicals (accessed on 4 January 2024).
- de Geofroy, A. BioBTX and Agilyx Announce Collaboration for the Production of Circular Aromatic Chemicals|Agilyx. Available online: https://www.agilyx.com/biobtx-and-agilyx-announce-collaboration-for-the-production-of-circular-aromatic-chemicals/ (accessed on 4 January 2024).
- Gancedo, J.; Li, H.; Walz, J.S.; Faba, L.; Ordoñez, S.; Huber, G.W. Investigation into the shape selectivity of zeolites for conversion of polyolefin plastic pyrolysis oil model compound. Appl. Catal. A Gen. 2024, 669, 119484. [Google Scholar] [CrossRef]
- Zheng, D.; Cheng, J.; Wang, X.; Yu, G.; Xu, R.; Dai, C.; Liu, N.; Wang, N.; Chen, B. Influences and mechanisms of pyrolytic conditions on recycling BTX products from passenger car waste tires. Waste Manag. 2023, 169, 196–207. [Google Scholar] [CrossRef]
- Mortier, R.M.; Fox, M.F.; Orszulik, S.T. (Eds.) Chemistry and Technology of Lubricants; Springer: Dordrecht, The Netherlands, 2010; ISBN 978-1-4020-8661-8. [Google Scholar] [CrossRef]
- Holweger, W. Fundamentals of Lubricants and Lubrication. In Tribology—Fundamentals and Advancements; Gegner, J., Ed.; InTech: Rijeka, Croatia, 2013; ISBN 978-953-51-1135-1. [Google Scholar] [CrossRef]
- Strategic Market Research. Phase Change Materials Market Size, Share, Growth Analysis, 2030. Available online: https://www.strategicmarketresearch.com/market-report/phase-change-materials-market (accessed on 22 December 2023).
- Raoux, S.; Wuttig, M. (Eds.) Phase Change Materials; Springer: Boston, MA, USA, 2009; ISBN 978-0-387-84873-0. [Google Scholar] [CrossRef]
- Kahwaji, S.; White, M.A. Organic Phase Change Materials for Thermal Energy Storage: Influence of Molecular Structure on Properties. Molecules 2021, 26, 6635. [Google Scholar] [CrossRef]
- Soliman, F.S. Paraffin—An Overview; InTech Open: London, UK, 2020; ISBN 978-1-83880-595-1. [Google Scholar] [CrossRef]
- Sun, K.; Liu, H.; Wang, X.; Wu, D. Innovative design of superhydrophobic thermal energy-storage materials by microencapsulation of n-docosane with nanostructured ZnO/SiO2 shell. Appl. Energy 2019, 237, 549–565. [Google Scholar] [CrossRef]
- Camin, D.L.; Forziati, A.F.; Rossini, F.D. Physical Properties of n-Hexadecane, n-Decylcyclopentane, n-Decylcyclohexane, 1-Hexadecene and n-Decylbenzene. J. Phys. Chem. 1954, 58, 440–442. [Google Scholar] [CrossRef]
- Sarı, A.; Alkan, C.; Karaipekli, A. Preparation, characterization and thermal properties of PMMA/n-heptadecane microcapsules as novel solid–liquid microPCM for thermal energy storage. Appl. Energy 2010, 87, 1529–1534. [Google Scholar] [CrossRef]
- Yang, R.; Zhang, Y.; Wang, X.; Zhang, Y.; Zhang, Q. Preparation of n-tetradecane-containing microcapsules with different shell materials by phase separation method. Sol. Energy Mater. Sol. Cells 2009, 93, 1817–1822. [Google Scholar] [CrossRef]
- Vélez, C.; Khayet, M.; Ortiz de Zárate, J.M. Temperature-dependent thermal properties of solid/liquid phase change even-numbered n-alkanes: N-Hexadecane, n-octadecane and n-eicosane. Appl. Energy 2015, 143, 383–394. [Google Scholar] [CrossRef]
- Vélez, C.; de Zárate, J.M.O.; Khayet, M. Thermal properties of n-pentadecane, n-heptadecane and n-nonadecane in the solid/liquid phase change region. Int. J. Therm. Sci. 2015, 94, 139–146. [Google Scholar] [CrossRef]
- European Commission. Information for Importers of Quipment Containing Fluorinated Greenhouse Gases on Their Obligations under the EU F-Gas Regulation. 2016. Available online: https://www.certifico.com/component/attachments/download/4314 (accessed on 20 December 2023).
- EU F-Gas Regulation: The Beginning of the End for Climate-Damaging Fluorinated Gases—ECOS. Available online: https://ecostandard.org/news_events/eu-f-gas-regulation-the-beginning-of-the-end-for-climate-damaging-fluorinated-gases/ (accessed on 26 December 2023).
- Purohit, P.; Höglund-Isaksson, L. Global emissions of fluorinated greenhouse gases 2005–2050 with abatement potentials and costs. Atmos. Chem. Phys. 2017, 17, 2795–2816. [Google Scholar] [CrossRef]
- Bravo, I.; Díaz-de-Mera, Y.; Aranda, A.; Moreno, E.; Nutt, D.R.; Marston, G. Radiative efficiencies for fluorinated esters: Indirect global warming potentials of hydrofluoroethers. Phys. Chem. Chem. Phys. 2011, 13, 17185–17193. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.; Van Dril, T. Decarbonisation Options for Large Volume Organic Chemicals production, SABIC Geleen. In Energy and Climate Change; PBL Netherlands Environmental Assessment Agency: The Hague, The Netherlands, 2021; PBL publication number 3718. [Google Scholar]
- Mazloum, S.; Awad, S.; Allam, N.; Aboumsallem, Y.; Loubar, K.; Tazerout, M. Modelling plastic heating and melting in a semi-batch pyrolysis reactor. Appl. Energy 2021, 283, 116375. [Google Scholar] [CrossRef]
- Kusenberg, M.; Eschenbacher, A.; Djokic, M.R.; Zayoud, A.; Ragaert, K.; De Meester, S.; Van Geem, K.M. Opportunities and challenges for the application of post-consumer plastic waste pyrolysis oils as steam cracker feedstocks: To decontaminate or not to decontaminate? Waste Manag. 2022, 138, 83–115. [Google Scholar] [CrossRef] [PubMed]
- JEC Group: Trends in the Global Composites Industry 2020–2025. Available online: https://www.textiletechnology.net/technology/news/JEC-Group-Trends-in-the-global-composites-industry-2020-2025-23733 (accessed on 26 December 2023).
- Oliveux, G.; Dandy, L.O.; Leeke, G.A. Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties. Prog. Mater. Sci. 2015, 72, 61–99. [Google Scholar] [CrossRef]
- Branfoot, C.; Folkvord, H.; Keith, M.; Leeke, G.A. Recovery of chemical recyclates from fibre-reinforced composites: A review of progress. Polym. Degrad. Stab. 2023, 215, 110447. [Google Scholar] [CrossRef]
- Rybicka, J.; Tiwari, A.; Leeke, G.A. Technology readiness level assessment of composites recycling technologies. J. Clean. Prod. 2016, 112, 1001–1012. [Google Scholar] [CrossRef]
- Butenegro, J.A.; Bahrami, M.; Abenojar, J.; Martínez, M.Á. Recent Progress in Carbon Fiber Reinforced Polymers Recycling: A Review of Recycling Methods and Reuse of Carbon Fibers. Materials 2021, 14, 6401. [Google Scholar] [CrossRef]
Additive Type | Examples |
---|---|
Plasticizers | Benzyl butyl phthalate |
Di-isoheptyl phthalate | |
Di-isobutyl phthalate | |
Dibutyl phthalate | |
Bis (2-ethylhexyl) phthalate | |
Bis(2-methoxyethyl) phthalate | |
Tris(2-chloroethyl) phosphate | |
Stabilizers | Arsenic compounds |
Triclosan | |
Organic tin compounds | |
Bisphenol A (BPA) | |
Octylphenol | |
Cadmium compounds | |
Colorant | Titanium dioxide |
Cobalt (II) diacetate | |
Chromium compounds | |
Curing agents | Formaldehyde |
4,4′-Diaminodiphenylmethane | |
2,2′-dichloro-4,4′-methylenedianiline |
Blend | Properties | Ref. | |
---|---|---|---|
Homopolymer–homopolymer | Polyphenylene oxide (PPO)–polystyrene (PS) | Known as NOYRLTM, may be designed to replace metallic parts in mechanical assemblies | [23] |
Polyethylene terephthalate (PET)–polybutylene terephthalate (PBT) | Heat and chemical resistance, along with excellent processability | [24] | |
poly(methyl methacrylate) (PMMA)–polyvinylidene fluoride (PVDF) | Combines the rigidity of PMMA and the flexibility of PVDF while lowering the melting point | [25] | |
Homopolymer–copolymer | Polypropylene (PP)–EPDM rubber | Increased tensile strength | [26] |
Polycarbonate (PC)–acrylonitrile butadiene styrene (ABS) | Improved toughness, processability, and thermal stability | [27,28] |
Polymer/Feedstock | Type | Operating Conditions | Products | Ref. |
---|---|---|---|---|
PET | Acid hydrolysis | Depolymerization of PET occurs at 100 °C in 96 h and may add catalysts, such as MSO4 | Terephthalic acid (TPA) and ethylene glycol (EG) | [41] |
PET | Alkaline hydrolysis | Carried out in an alkaline solution of NaOH or KOH with a concentration range of 4–20 wt%, with the reaction taking 3–5 h at 210–250 °C | Ethylene glycol (EG) and terephthalic salts | [42] |
PET | Transesterification (methanol) | Depolymerized at 65 °C in a stirred reactor, catalyzed using Na2CO3 and a MeOH/EG molar ratio > 15 for 90 min | DMT + EG | [43] |
Polylactic acid (PLA) | Hydrolysis | Carried out at a temperature of 60–80 °C and takes 15–50 days | Lactic acid | [44] |
Nylon polymers (nylon 6, nylon 6/6, nylon 12, and nylon 6/12) | Acid hydrolysis | Carried out at 350 °C for 10 min | ϵ-caprolactam | [45] |
Polymer/Feedstock | Type | Operating Conditions | Products | Ref. |
---|---|---|---|---|
LDPE | High-pressure pyrolysis | High pressure up to 51 bar, initial temperature of 330–380 °C, exceed the set temperature by 100 °C at a rate of 150 °C/min, stirring at 200 rpm | Aromatic compounds, isoparaffins, and cycloalkanes | [56] |
PET | Catalytic pyrolysis | Heating at 700 °C in the presence of a Ca(OH)2 catalyst | Benzene (used for lubricants, dyes, and detergents) | [57] |
HDPE | Catalytic cold plasma pyrolysis | 18 h at room temperature, then calcinated to 500 °C for 6 h in the presence of HZSM-5 zeolite or sulfated zirconia catalyst | Ethylene | [58] |
HDPE, LDPE, PP, PS | Catalytic pyrolysis | Stirring at 50 °C until the mixture becomes slurry, then heating at 105 °C for 12 h and calcination at 800 °C for 2 h at a rate of 20 °C/min in the presence of an Fe/Al2O3 catalyst | Amorphous carbon, carbon nanotubes, and hydrogen | [59] |
PP | Catalytic pyrolysis | Stirring at 100 °C, then drying in an oven at 120 °C and calcination at atmospheric pressure at 500 °C using Ni-Cu/La2O3 catalyst | Multiwalled carbon nanotubes and carbon nanofibers | [60] |
PS | Flash pyrolysis | Operating at 500 °C | Styrene with byproducts (toluene, ethyl benzene, and α-methyl styrene) | [61] |
Single-use face masks (PP)/food waste | Single-step pyrolysis | Operating at 900 °C | Hydrocarbon mixtures and hydrogen | [62] |
Technology Provider | Capacity in Tons per Day | Feedstock | Products | Technology Utilized | Location |
---|---|---|---|---|---|
Alterra energy | 60 | HDPE, LDPE, PP, PS, and “other” types of plastics | Syncrude and diesel | Rotary kiln | Akron, OH, USA |
Nexus | 50 | HDPE, LDPE, PP, and PS with contamination ≤ 1% PVC and ≤2% PET | Light crude, diesel, gasoline, kerosene blendstocks, and wax | Melting vessel | Atlanta, GA, USA |
Agilyx | 10–50 | Film HDPE, LDPE, PP, and PS | Light synthetic crude oil | Dual screw reactor | Tigard, OR, USA |
Recycling Technologies | 20 | Soft and flexible packaging (films), multilayered and laminated plastics (crisp packets), and complex and contaminated plastics (food trays) | Low-sulfur hydrocarbon Plaxx—wax | Fluidized bed | Swindon, UK |
Plastic Energy | 20–30 | Rigid and film HDPE, LDPE, PP, and PS | Raw diesel, light oil, and synthetic gas components | Stirred-tank reactor | Sevilla, Spain |
Susteen Technologies | 12 | Mainly residual biomass and sewage sludge | Green crude, diesel, gasoline, and jet fuel | Screw with recirculation | Sulzbach-Rosenberg, Germany |
PHJK | 12–14 | Unsorted plastic waste | Light crude oil and diesel | Rotary kiln | Laihia, Finland |
PCM | Melting Point (°C) | Latent Heat (kJ/kg) | Thermal Conductivity (W/m.K) |
---|---|---|---|
n-Tetradecane | 6 | 228–230 | 0.14 |
n-Pentadecane | 10 | 205 | 0.2 |
n-Hexadecane | 18 | 237 | 0.2 |
n-Heptadecane | 22 | 213 | 0.145 |
n-Octadecane | 28 | 245 | 0.148 |
n-Docosane | 44.5 | 249 | 0.2 |
Gas | GWP (AR49, 100 Year) |
---|---|
CO2 | 1 |
Ammonia (NH3) | 0 |
Nitrous oxide | 298 |
Hydrocarbons | |
Methane | 25 |
Propane (R-290) | 3 |
Isobutane (R-600a) | 3 |
Propylene (R-1270) | <1 |
HFC | |
R134a | 1430 |
R407C | 1774 |
R410A | 2088 |
R404A | 3922 |
HFC-125 | 3500 |
PFC-14 | 7390 |
SF6 | 22,800 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moussa, K.; Awad, S.; Krawczak, P.; Al Takash, A.; Faraj, J.; Khaled, M. An Overview of the Non-Energetic Valorization Possibilities of Plastic Waste via Thermochemical Processes. Materials 2024, 17, 1460. https://doi.org/10.3390/ma17071460
Moussa K, Awad S, Krawczak P, Al Takash A, Faraj J, Khaled M. An Overview of the Non-Energetic Valorization Possibilities of Plastic Waste via Thermochemical Processes. Materials. 2024; 17(7):1460. https://doi.org/10.3390/ma17071460
Chicago/Turabian StyleMoussa, Kazem, Sary Awad, Patricia Krawczak, Ahmad Al Takash, Jalal Faraj, and Mahmoud Khaled. 2024. "An Overview of the Non-Energetic Valorization Possibilities of Plastic Waste via Thermochemical Processes" Materials 17, no. 7: 1460. https://doi.org/10.3390/ma17071460
APA StyleMoussa, K., Awad, S., Krawczak, P., Al Takash, A., Faraj, J., & Khaled, M. (2024). An Overview of the Non-Energetic Valorization Possibilities of Plastic Waste via Thermochemical Processes. Materials, 17(7), 1460. https://doi.org/10.3390/ma17071460