Comparison between Two Different Synthesis Methods of Strontium-Doped Hydroxyapatite Designed for Osteoporotic Bone Restoration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of HA and SrHA Powders
2.2. Characterization Methods of HA/SrHA Powders
2.2.1. General Overview of Characterization Methods
2.2.2. X-ray Powder Diffraction Analysis
2.2.3. Fourier Transform Infrared Spectroscopy (FTIR) Analysis
2.2.4. Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX) Analysis
2.2.5. Transmission Electron Microscopy (TEM) Analysis
2.2.6. Textural Analysis
2.2.7. Strontium-Ion Release by Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
2.2.8. In Vitro Biological Evaluation
3. Results and Discussion
3.1. X-ray Powder Diffraction
3.2. Fourier Transform Infrared Spectroscopy (FTIR) Analysis
3.3. Textural Analysis
3.4. Scanning Electron Microscopy (SEM) Analysis
3.5. Transmission Electron Microscopy (TEM) Analysis
3.6. Energy Dispersive X-ray (EDX) Analysis
3.7. Strontium-Ion Release by Inductively Coupled Plasma Atomic Mass Spectrometry Analysis (ICP-MS)
3.8. Cytotoxicity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, K.; Wang, S.; Zhou, C.; Cheng, L.; Gao, X.; Xie, X.; Sun, J.; Wang, H.; Weir, M.D.; Reynolds, M.A.; et al. Advanced Smart Biomaterials and Constructs for Hard Tissue Engineering and Regeneration. Bone Res. 2018, 6, 31. [Google Scholar] [CrossRef]
- Pierantozzi, D.; Scalzone, A.; Jindal, S.; Stīpniece, L.; Šalma-Ancāne, K.; Dalgarno, K.; Gentile, P.; Mancuso, E. 3D Printed Sr-Containing Composite Scaffolds: Effect of Structural Design and Material Formulation towards New Strategies for Bone Tissue Engineering. Compos. Sci. Technol. 2020, 191, 108069. [Google Scholar] [CrossRef]
- Chandran, M.; Mitchell, P.J.; Amphansap, T.; Bhadada, S.K.; Chadha, M.; Chan, D.-C.; Chung, Y.-S.; Ebeling, P.; Gilchrist, N.; Habib Khan, A.; et al. Development of the Asia Pacific Consortium on Osteoporosis (APCO) Framework: Clinical Standards of Care for the Screening, Diagnosis, and Management of Osteoporosis in the Asia-Pacific Region. Osteoporos. Int. 2021, 32, 1249–1275. [Google Scholar] [CrossRef]
- Lin, S.-Y.; Hung, M.-C.; Chang, S.-F.; Tsuang, F.-Y.; Chang, J.Z.-C.; Sun, J.-S. Efficacy and Safety of Postmenopausal Osteoporosis Treatments: A Systematic Review and Network Meta-Analysis of Randomized Controlled Trials. J. Clin. Med. 2021, 10, 3043. [Google Scholar] [CrossRef]
- Liu, T.; Huang, J.; Xu, D.; Li, Y. Identifying a Possible New Target for Diagnosis and Treatment of Postmenopausal Osteoporosis through Bioinformatics and Clinical Sample Analysis. Ann. Transl. Med. 2021, 9, 1154. [Google Scholar] [CrossRef]
- Rinonapoli, G.; Ruggiero, C.; Meccariello, L.; Bisaccia, M.; Ceccarini, P.; Caraffa, A. Osteoporosis in Men: A Review of an Underestimated Bone Condition. Int. J. Mol. Sci. 2021, 22, 2105. [Google Scholar] [CrossRef] [PubMed]
- Eiden-Aßmann, S.; Viertelhaus, M.; Heiß, A.; Hoetzer, K.A.; Felsche, J. The Influence of Amino Acids on the Biomineralization of Hydroxyapatite in Gelatin. J. Inorg. Biochem. 2002, 91, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Gao, C.; Jiang, J.; Wu, Y.; Zhu, P.; Chen, G. 3D Printed Porous PLA/nHA Composite Scaffolds with Enhanced Osteogenesis and Osteoconductivity in Vivo for Bone Regeneration. Biomed. Mater. 2019, 14, 065003. [Google Scholar] [CrossRef] [PubMed]
- Custodio, C.L.; Broñola, P.J.M.; Cayabyab, S.R.; Lagura, V.U.; Celorico, J.R.; Basilia, B.A. Powder Loading Effects on the Physicochemical and Mechanical Properties of 3D Printed Poly Lactic Acid/Hydroxyapatite Biocomposites. Int. J. Bioprinting 2021, 7, 326. [Google Scholar] [CrossRef] [PubMed]
- Babilotte, J.; Martin, B.; Guduric, V.; Bareille, R.; Agniel, R.; Roques, S.; Héroguez, V.; Dussauze, M.; Gaudon, M.; Le Nihouannen, D.; et al. Development and Characterization of a PLGA-HA Composite Material to Fabricate 3D-Printed Scaffolds for Bone Tissue Engineering. Mater. Sci. Eng. C 2021, 118, 111334. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.; Chang, J. 1—Structure and Properties of Hydroxyapatite for Biomedical Applications. In Hydroxyapatite (Hap) for Biomedical Applications; Mucalo, M., Ed.; Woodhead Publishing: Cambridge, UK, 2015; pp. 3–19. [Google Scholar] [CrossRef]
- Wang, W.; Xue, Z.; Wang, R.; Wang, X.; Xu, D. Molecular Dynamics Exploration of the Growth Mechanism of Hydroxyapatite Nanoparticles Regulated by Glutamic Acid. J. Phys. Chem. B 2021, 125, 5078–5088. [Google Scholar] [CrossRef]
- Jakus, A.E.; Rutz, A.L.; Jordan, S.W.; Kannan, A.; Mitchell, S.M.; Yun, C.; Koube, K.D.; Yoo, S.C.; Whiteley, H.E.; Richter, C.-P.; et al. Hyperelastic “Bone”: A Highly Versatile, Growth Factor–Free, Osteoregenerative, Scalable, and Surgically Friendly Biomaterial. Sci. Transl. Med. 2016, 8, 358ra127. [Google Scholar] [CrossRef]
- Barbanente, A.; Palazzo, B.; Esposti, L.D.; Adamiano, A.; Iafisco, M.; Ditaranto, N.; Migoni, D.; Gervaso, F.; Nadar, R.; Ivanchenko, P.; et al. Selenium-Doped Hydroxyapatite Nanoparticles for Potential Application in Bone Tumor Therapy. J. Inorg. Biochem. 2021, 215, 111334. [Google Scholar] [CrossRef] [PubMed]
- Mucalo, M.R. 14—Animal-Bone Derived Hydroxyapatite in Biomedical Applications. In Hydroxyapatite (Hap) for Biomedical Applications; Mucalo, M., Ed.; Woodhead Publishing: Cambridge, UK, 2015; pp. 307–342. [Google Scholar] [CrossRef]
- Barba, A.; Maazouz, Y.; Diez-Escudero, A.; Rappe, K.; Espanol, M.; Montufar, E.B.; Öhman-Mägi, C.; Persson, C.; Fontecha, P.; Manzanares, M.-C.; et al. Osteogenesis by Foamed and 3D-Printed Nanostructured Calcium Phosphate Scaffolds: Effect of Pore Architecture. Acta Biomater. 2018, 79, 135–147. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Luo, D.; Liu, Y. Effect of the Nano/Microscale Structure of Biomaterial Scaffolds on Bone Regeneration. Int. J. Oral. Sci. 2020, 12, 6. [Google Scholar] [CrossRef] [PubMed]
- Carmona, F.J.; Dal Sasso, G.; Bertolotti, F.; Ramírez-Rodríguez, G.B.; Delgado-López, J.M.; Pedersen, J.S.; Masciocchi, N.; Guagliardi, A. The Role of Nanoparticle Structure and Morphology in the Dissolution Kinetics and Nutrient Release of Nitrate-Doped Calcium Phosphate Nanofertilizers. Sci. Rep. 2020, 10, 12396. [Google Scholar] [CrossRef] [PubMed]
- Geng, Z.; Yuan, Q.; Zhuo, X.; Li, Z.; Cui, Z.; Zhu, S.; Liang, Y.; Liu, Y.; Bao, H.; Li, X.; et al. Synthesis, Characterization, and Biological Evaluation of Nanostructured Hydroxyapatite with Different Dimensions. Nanomaterials 2017, 7, 38. [Google Scholar] [CrossRef] [PubMed]
- Sammons, R. 3—Biological Responses to Hydroxyapatite. In Hydroxyapatite (Hap) for Biomedical Applications; Mucalo, M., Ed.; Woodhead Publishing: Cambridge, UK, 2015; pp. 53–83. [Google Scholar] [CrossRef]
- Scalera, F.; Palazzo, B.; Barca, A.; Gervaso, F. Sintering of Magnesium-Strontium Doped Hydroxyapatite Nanocrystals: Towards the Production of 3D Biomimetic Bone Scaffolds. J. Biomed. Mater. Res. Part A 2020, 108, 633–644. [Google Scholar] [CrossRef]
- Landi, E.; Tampieri, A.; Celotti, G.; Sprio, S.; Sandri, M.; Logroscino, G. Sr-Substituted Hydroxyapatites for Osteoporotic Bone Replacement. Acta Biomater. 2007, 3, 961–969. [Google Scholar] [CrossRef]
- Li, Z.Y.; Lam, W.M.; Yang, C.; Xu, B.; Ni, G.X.; Abbah, S.A.; Cheung, K.M.C.; Luk, K.D.K.; Lu, W.W. Chemical Composition, Crystal Size and Lattice Structural Changes after Incorporation of Strontium into Biomimetic Apatite. Biomaterials 2007, 28, 1452–1460. [Google Scholar] [CrossRef]
- Ullah, I.; Siddiqui, M.A.; Kolawole, S.K.; Liu, H.; Zhang, J.; Ren, L.; Yang, K. Synthesis, Characterization and in Vitro Evaluation of Zinc and Strontium Binary Doped Hydroxyapatite for Biomedical Application. Ceram. Int. 2020, 46, 14448–14459. [Google Scholar] [CrossRef]
- Wopenka, B.; Pasteris, J.D. A Mineralogical Perspective on the Apatite in Bone. Mater. Sci. Eng. C 2005, 25, 131–143. [Google Scholar] [CrossRef]
- Šupová, M.; Simha Martynková, G.; Sucharda, Z. Bioapatite Made from Chicken Femur Bone. Ceramics-Silikáty 2011, 55, 256–260. [Google Scholar]
- Gritsch, L.; Maqbool, M.; Mouriño, V.; Ciraldo, F.E.; Cresswell, M.; Jackson, P.R.; Lovell, C.; Boccaccini, A.R. Chitosan/Hydroxyapatite Composite Bone Tissue Engineering Scaffolds with Dual and Decoupled Therapeutic Ion Delivery: Copper and Strontium. J. Mater. Chem. B 2019, 7, 6109–6124. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Yang, Y.; Fan, Y.; Zhang, L.; Tang, S.; Zhu, Y.; Zhou, X. Strontium-Doped Hydroxyapatite as an Efficient Adsorbent for Cd(II) Removal from Wastewater: Performance, Kinetics, and Mechanism. Environ. Technol. Innov. 2022, 28, 102575. [Google Scholar] [CrossRef]
- Gheisari, H.; Karamian, E.; Abdellahi, M. A Novel Hydroxyapatite –Hardystonite Nanocomposite Ceramic. Ceram. Int. 2015, 41, 5967–5975. [Google Scholar] [CrossRef]
- Forysenkova, A.A.; Fadeeva, I.V.; Deyneko, D.V.; Gosteva, A.N.; Mamin, G.V.; Shurtakova, D.V.; Davydova, G.A.; Yankova, V.G.; Antoniac, I.V.; Rau, J.V. Polyvinylpyrrolidone—Alginate—Carbonate Hydroxyapatite Porous Composites for Dental Applications. Materials 2023, 16, 4478. [Google Scholar] [CrossRef] [PubMed]
- Prabhu, S.M.; Khan, A.; Hasmath Farzana, M.; Hwang, G.C.; Lee, W.; Lee, G. Synthesis and Characterization of Graphene Oxide-Doped Nano-Hydroxyapatite and Its Adsorption Performance of Toxic Diazo Dyes from Aqueous Solution. J. Mol. Liq. 2018, 269, 746–754. [Google Scholar] [CrossRef]
- Correa-Piña, B.A.; Gomez-Vazquez, O.M.; Londoño-Restrepo, S.M.; Zubieta-Otero, L.F.; Millan-Malo, B.M.; Rodriguez-García, M.E. Synthesis and Characterization of Nano-Hydroxyapatite Added with Magnesium Obtained by Wet Chemical Precipitation. Prog. Nat. Sci. Mater. Int. 2021, 31, 575–582. [Google Scholar] [CrossRef]
- Xu, J.; Yang, Y.; Wan, R.; Shen, Y.; Zhang, W. Hydrothermal Preparation and Characterization of Ultralong Strontium-Substituted Hydroxyapatite Whiskers Using Acetamide as Homogeneous Precipitation Reagent. Sci. World J. 2014, 2014, 863137. [Google Scholar] [CrossRef]
- Verberckmoes, S.C.; Behets, G.J.; Oste, L.; Bervoets, A.R.; Lamberts, L.V.; Drakopoulos, M.; Somogyi, A.; Cool, P.; Dorriné, W.; De Broe, M.E.; et al. Effects of Strontium on the Physicochemical Characteristics of Hydroxyapatite. Calcif. Tissue Int. 2004, 75, 405–415. [Google Scholar] [CrossRef] [PubMed]
- Khalid, M.; Mujahid, M.; Amin, S.; Rawat, R.S.; Nusair, A.; Deen, G.R. Effect of Surfactant and Heat Treatment on Morphology, Surface Area and Crystallinity in Hydroxyapatite Nanocrystals. Ceram. Int. 2013, 39, 39–50. [Google Scholar] [CrossRef]
- Alshemary, A.Z.; Pazarceviren, A.E.; Tezcaner, A.; Evis, Z. Mesoporous Strontium Doped Nano Sized Sulphate Hydroxyapatite as a Novel Biomaterial for Bone Tissue Applications. RSC Adv. 2016, 6, 68058–68071. [Google Scholar] [CrossRef]
- Stipniece, L.; Salma-Ancane, K.; Loca, D.; Pastare, S. Synthesis of Strontium Substituted Hydroxyapatite through Different Precipitation Routes. In Key Engineering Materials; Trans Tech Publications, Ltd.: Stafa-Zurich, Switzerland, 2016. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Kadu, K.; Kowshik, M.; Roy Ramanan, S. Does the Nanoparticle Morphology Influence Interaction with Protein: A Case Study with Hydroxyapatite Nanoparticles. Mater. Today Commun. 2021, 26, 102172. [Google Scholar] [CrossRef]
- Dumitrescu, C.R.; Neacsu, I.A.; Surdu, V.A.; Nicoara, A.I.; Iordache, F.; Trusca, R.; Ciocan, L.T.; Ficai, A.; Andronescu, E. Nano-Hydroxyapatite vs. Xenografts: Synthesis, Characterization, and In Vitro Behavior. Nanomaterials 2021, 11, 2289. [Google Scholar] [CrossRef]
- Nagyné-Kovács, T.; Studnicka, L.; Kincses, A.; Spengler, G.; Molnár, M.; Tolner, M.; Lukács, I.E.; Szilágyi, I.M.; Pokol, G. Synthesis and Characterization of Sr and Mg-Doped Hydroxyapatite by a Simple Precipitation Method. Ceram. Int. 2018, 44, 22976–22982. [Google Scholar] [CrossRef]
Sample | 2ϴ (002) (deg) | 2ϴ (deg)/ (002) FWHM | Crystallite Size (002) (Å) Scher Eq | Χc | Lattice Parameters | V (Å3) | |
---|---|---|---|---|---|---|---|
a = b | c | ||||||
HAHT | 25.75 | 0.416 | 205 | 0.19 | 9.4320 | 6.8899 | 530.82 |
HAHT-Sr1% | 25.72 | 0.421 | 202 | 0.19 | 9.4372 | 6.8994 | 532.14 |
HAHT-Sr5% | 25.67 | 0.424 | 201 | 0.18 | 9.4440 | 6.9081 | 533.12 |
HAHT-Sr10% | 25.62 | 0.436 | 195 | 0.17 | 9.4593 | 6.9239 | 536.53 |
HAHT-Sr20% | 25.44 | 0.458 | 186 | 0.14 | 9.4963 | 6.9662 | 544.04 |
HAHT-Sr30% | 25.31 | 0.469 | 181 | 0.13 | 9.5288 | 7.0077 | 551.03 |
HAPR | 25.76 | 0.561 | 152 | 0.08 | 9.4230 | 6.8841 | 529.36 |
HAPR-Sr1% | 25.74 | 0.566 | 150 | 0.08 | 9.4317 | 6.8933 | 531.04 |
HAPR-Sr5% | 25.68 | 0.565 | 151 | 0.08 | 9.4360 | 6.9024 | 532.23 |
HAPR-Sr10% | 25.63 | 0.588 | 142 | 0.06 | 9.4651 | 6.9251 | 537.28 |
HAPR-Sr20% | 25.48 | 0.581 | 146 | 0.07 | 9.5250 | 6.9650 | 547.24 |
HAPR-Sr30% | 25.41 | 1.001 | 79 | 0.01 | 9.6001 | 7.0022 | 558.87 |
Hydroxyapatite—crystal system hexagonal; space group P63/m(176)-01-072-1243 | 9.4320 | 6.8810 | 530.14 |
Sample | SBET (m2g−1) | Total Pore Volume (cm3g−1) | Average Pore Size (nm) |
---|---|---|---|
HAPR | 144.8 | 0.510 | 11.7 |
HAPR-Sr 1% | 136.6 | 0.446 | 10.6 |
HAPR-Sr 5% | 141.8 | 0.468 | 11.0 |
HAPR-Sr 10% | 136.2 | 0.534 | 13.3 |
HAPR-Sr 20% | 130.9 | 0.518 | 13.2 |
HAPR-Sr 30% | 104.5 | 0.608 | 20.2 |
HAHT | 73.3 | 0.479 | 22.2 |
HAHT-Sr 1% | 74.3 | 0.450 | 21.0 |
HAHT-Sr 5% | 74.5 | 0.470 | 21.4 |
HAHT-Sr 10% | 75.9 | 0.502 | 23.5 |
HAHT-Sr 20% | 71.3 | 0.460 | 23.3 |
HAHT-Sr 30% | 68.7 | 0.458 | 23.7 |
Element Atomic % | HAPR | HAPR Sr1% | HAPR Sr5% | HAPR Sr10% | HAPR Sr20% | HAPR Sr30% | HAHT | HAHT Sr1% | HAHT Sr5% | HAHT Sr10% | HAHT Sr20% | HAHT Sr30% |
---|---|---|---|---|---|---|---|---|---|---|---|---|
C | 0 | 3.38 | 1.07 | 11.9 | 0.36 | 8.15 | 48.97 | 24.49 | 9.8 | 55.48 | 51.77 | 55.86 |
O | 69.6 | 73.74 | 68.68 | 59.47 | 67.9 | 65.38 | 42.47 | 60.92 | 69.85 | 38.22 | 41.6 | 39.39 |
P | 11.42 | 9.83 | 11.63 | 9.37 | 12.57 | 10.35 | 3.59 | 6.53 | 8.28 | 2.48 | 2.82 | 1.88 |
Ca | 18.98 | 12.96 | 18.13 | 17.42 | 16.64 | 12.39 | 4.97 | 7.89 | 11.68 | 3.38 | 3.22 | 1.98 |
Sr | 0 | 0.09 | 0.49 | 1.85 | 2.52 | 3.73 | 0 | 0.17 | 0.39 | 0.43 | 0.59 | 0.89 |
Ca + Sr | 18.98 | 13.05 | 18.62 | 19.27 | 19.16 | 16.12 | 4.97 | 8.06 | 12.07 | 3.81 | 3.81 | 2.87 |
(Ca + Sr)/P | 1.66 | 1.33 | 1.60 | 2.06 | 1.52 | 1.56 | 1.38 | 1.23 | 1.46 | 1.54 | 1.35 | 1.53 |
Sr/(Ca + Sr) % | 0.00 | 0.69 | 2.63 | 9.60 | 13.15 | 23.14 | 0.00 | 2.11 | 3.23 | 11.29 | 15.49 | 31.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Codrea, C.I.; Lincu, D.; Atkinson, I.; Culita, D.C.; Croitoru, A.-M.; Dolete, G.; Trusca, R.; Vasile, B.S.; Stan, M.S.; Ficai, D.; et al. Comparison between Two Different Synthesis Methods of Strontium-Doped Hydroxyapatite Designed for Osteoporotic Bone Restoration. Materials 2024, 17, 1472. https://doi.org/10.3390/ma17071472
Codrea CI, Lincu D, Atkinson I, Culita DC, Croitoru A-M, Dolete G, Trusca R, Vasile BS, Stan MS, Ficai D, et al. Comparison between Two Different Synthesis Methods of Strontium-Doped Hydroxyapatite Designed for Osteoporotic Bone Restoration. Materials. 2024; 17(7):1472. https://doi.org/10.3390/ma17071472
Chicago/Turabian StyleCodrea, Cosmin Iulian, Daniel Lincu, Irina Atkinson, Daniela C. Culita, Alexa-Maria Croitoru, Georgiana Dolete, Roxana Trusca, Bogdan Stefan Vasile, Miruna Silvia Stan, Denisa Ficai, and et al. 2024. "Comparison between Two Different Synthesis Methods of Strontium-Doped Hydroxyapatite Designed for Osteoporotic Bone Restoration" Materials 17, no. 7: 1472. https://doi.org/10.3390/ma17071472
APA StyleCodrea, C. I., Lincu, D., Atkinson, I., Culita, D. C., Croitoru, A. -M., Dolete, G., Trusca, R., Vasile, B. S., Stan, M. S., Ficai, D., & Ficai, A. (2024). Comparison between Two Different Synthesis Methods of Strontium-Doped Hydroxyapatite Designed for Osteoporotic Bone Restoration. Materials, 17(7), 1472. https://doi.org/10.3390/ma17071472