Structural, Electrical and Corrosion Properties of Bulk Ti–Cu Alloys Produced by Mechanical Alloying and Powder Metallurgy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Sample Preparation
2.3. Materials Characterization
3. Results and Discussion
3.1. Crystallography and Microstructure
3.2. Electrochemical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, K. The Use of Titanium for Medical Applications in the USA. Mater. Sci. Eng. A 1996, 213, 134–137. [Google Scholar] [CrossRef]
- Rack, H.J.; Qazi, J.J. Titanium Alloys for Biomedical Applications. Mater. Sci. Eng. C 2006, 26, 1269–1277. [Google Scholar] [CrossRef]
- Elias, C.N.; Lima, J.H.C.; Valiev, R.; Meyers, M.A. Biomedical Applications of Titanium and Its Alloys. JOM 2008, 60, 46–49. [Google Scholar] [CrossRef]
- Geetha, M.; Singh, A.K.; Asokamani, R.; Gogia, A.K. Ti Based Biomaterials, the Ultimate Choice for Orthopedic Implants—A Review. Prog. Mater. Sci. 2009, 54, 397–425. [Google Scholar] [CrossRef]
- Supelano, G.I.; Mesa, F.; Vargas, C.A.P.; Mejía Gómez, J.A.; Dussan, A. Assessment of Surface and Electrical Properties of the TiO2@zeolite Hybrid Materials. Sci. Rep. 2023, 13, 3650. [Google Scholar] [CrossRef] [PubMed]
- Soussi, A.; Ait Hssi, A.; Boujnah, M.; Boulkadat, L.; Abouabassi, K.; Asbayou, A.; Elfanaoui, A.; Markazi, R.; Ihlal, A.; Bouabid, K. Electronic and Optical Properties of TiO2 Thin Films: Combined Experimental and Theoretical Study. J. Electron. Mater. 2021, 50, 4497–4510. [Google Scholar] [CrossRef]
- Bayani, A.; Gebhardt, J.; Elsässer, C. Electronic Bulk and Surface Properties of Titanium Dioxide Studied by DFT-1/2. Langmuir 2023, 39, 14922–14934. [Google Scholar] [CrossRef]
- Mele, G.; Del Sole, R.; Lü, X. Applications of TiO2 in Sensor Devices. In Titanium Dioxide (TiO2) and Its Applications; Parrino, F., Palmisano, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 527–581. [Google Scholar] [CrossRef]
- Mohammed, R.S.; Fakhri, M.A. Titanium Dioxide–Based Sensors: A Review. AIP Conf. Proc. 2021, 2660, 020133. [Google Scholar] [CrossRef]
- Nycz, M.; Arkusz, K.; Pijanowska, D.G. Fabrication of Electrochemical Biosensor Based on Titanium Dioxide Nanotubes and Silver Nanoparticles for Heat Shock Protein 70 Detection. Materials 2021, 14, 3767. [Google Scholar] [CrossRef]
- Arkusz, K.; Paradowska, E. Impedimetric Detection of Femtomolar Levels of Interleukin-6, Interleukin-8, and Tumor Necrosis Factor Alpha Based on Thermally Modified Nanotubular Titanium Dioxide Arrays. Nanomaterials 2020, 10, 2399. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, S.; Sun, Z.; Wang, H.; Ren, L.; Yang, K. Optimization of Mechanical Property, Antibacterial Property and Corrosion Resistance of Ti-Cu Alloy for Dental Implant. J. Mater. Sci. Technol. 2019, 35, 2336–2344. [Google Scholar] [CrossRef]
- Murray, J.L. The Cu-Ti (Copper-Titanium) System. Bull. Alloy Phase Diagr. 1983, 4, 81–95. [Google Scholar] [CrossRef]
- Akbarpour, M.R.; Mirabad, H.M.; Hemmati, A.; Kim, H.S. Processing and Microstructure of Ti-Cu Binary Alloys: A Comprehensive Review. Prog. Mater. Sci. 2022, 127, 100933. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, H.R.; Zhang, S.; Shi, Z.L.; Wei, C.; Ma, M.Z.; Liu, R.P. Effect of Cu Content on the Corrosion Behavior of Ti-Based Bulk Amorphous Alloys in HCl Solution. Mater. Lett. 2023, 337, 133742. [Google Scholar] [CrossRef]
- Shichalin, O.O.; Sakhnevich, V.N.; Buravlev, I.Y.; Lembikov, A.O.; Buravleva, A.A.; Azon, S.A.; Yarusova, S.B.; Danilova, S.N.; Fedorets, A.N.; Belov, A.A.; et al. Synthesis of Ti-Cu Multiphase Alloy by Spark Plasma Sintering: Mechanical and Corrosion Properties. Metals 2022, 12, 1089. [Google Scholar] [CrossRef]
- Wang, Z.; Fu, B.; Wang, Y.; Dong, T.; Li, J.; Li, G.; Zhao, X.; Liu, J.; Zhang, G. Effect of Cu Content on the Precipitation Behaviors, Mechanical and Corrosion Properties of As-Cast Ti-Cu Alloys. Materials 2022, 15, 1696. [Google Scholar] [CrossRef] [PubMed]
- Suryanarayana, C. Mechanical Alloying and Milling. Prog. Mater. Sci. 2001, 46, 1–184. [Google Scholar] [CrossRef]
- Tulinski, M.; Jurczyk, M. Nanomaterials Synthesis Methods. In E. Metrology and Standardization of Nanomaterials: Protocols and Industrial Innovations; Mansfield, D., Kaiser, D., Fujita, D., Van de Voorde, M., Eds.; Wiley-VCH: Weinheim, Germany, 2017; pp. 75–98. [Google Scholar]
- Jurczyk, K.; Jurczyk, M. Applications of Nanomaterials in Dentistry. In Handbook of Clinical Nanomedicine: Nanoparticles, Imaging, Therapy, and Clinical Applications; Bawa, R., Audette, G.F., Rubinstein, I., Eds.; Pan Stanford Publishing Pte. Ltd.: New York, NY, USA, 2015; pp. 1073–1108. [Google Scholar]
- Miklaszewski, A.; Jurczyk, M.U.; Kaczmarek, M.; Paszel-Jaworska, A.; Romaniuk, A.; Lipińska, N.; Żurawski, J.; Urbaniak, P.; Jurczyk, M. Nanoscale Size Effect in in situ Titanium Based Composites with Cell Viability and Cytocompatibility Studies. Mater. Sci. Eng. C 2017, 73, 525–536. [Google Scholar] [CrossRef]
- Webster, T.J.; Ejiofor, J.U. Increased Osteoblast Adhesion on Nanophase Metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials 2004, 25, 4731–4739. [Google Scholar] [CrossRef] [PubMed]
- Ward, B.C.; Webster, T.J. Increased Functions of Osteoblasts on Nanophase Metals. Mater. Sci. Eng. C 2007, 27, 575–578. [Google Scholar] [CrossRef]
- Politis, C.; Johnson, W.L. Preparation of Amorphous Ti1-xCux (0.10 < x ≤ 0.87) by Mechanical Alloying. J. Appl. Phys. 1986, 60, 1147–1151. [Google Scholar] [CrossRef]
- Urban, P.; Astacio, R.; Ternero, F.; Náhlík, L.; Cinta, J. Amorphous Phase Formation and Heat Treating Evolution in Mechanically Alloyed Ti-Cu Alloy for Biomedical Applications. Trans. Indian Inst. Met. 2022, 75, 3039–3046. [Google Scholar] [CrossRef]
- Li, D.; Zhu, Z.W.; Wang, A.M.; Fu, H.M.; Li, H.; Zhang, H.W.; Zhang, H.F. New Ductile Laminate Structure of Ti-Alloy/Ti-Based Metallic Glass Composite with High Specific Strength. J. Mater. Sci. Technol. 2018, 34, 708–712. [Google Scholar] [CrossRef]
- Xie, G.; Kanetaka, H.; Kato, H.; Qin, F.; Wang, W. Porous Ti-based Bulk Metallic Glass with Excellent Mechanical Properties and Good Biocompatibility. Intermetallics 2019, 105, 153–162. [Google Scholar] [CrossRef]
- Zhang, E.; Wang, X.; Chen, M.; Hou, B. Effect of the Existing Form of Cu Element on the Mechanical Properties, Bio-Corrosion and Antibacterial Properties of Ti-Cu Alloys for Biomedical Application. Mater. Sci. Eng. C 2016, 69, 1210–1221. [Google Scholar] [CrossRef] [PubMed]
- Mccusker, L.B.; Von Dreele, R.B.; Cox, D.E.; Louër, D.; Scardi, P. Rietveld Refinement Guidelines. J. Appl. Crystallogr. 1999, 32, 36–50. [Google Scholar] [CrossRef]
- Hautaniemi, J.A. Air Passivation of Ti-Cu, Ti-Co, and Ti-Al Alloys for Dental Applications. Appl. Surf. Sci. 1993, 72, 95–102. [Google Scholar] [CrossRef]
- Siddiqui, M.A.; Ullah, I.; Kolawole, S.K.; Peng, C.; Wang, J.; Ren, L.; Yang, K.; Macdonald, D.D. Study the Existing Form of Copper (p-type oxide/segregation) and Its Release Mechanism from the Passive Film of Ti-7Cu Alloy. Corros. Sci. 2021, 190, 109693. [Google Scholar] [CrossRef]
- Rahimi, E.; Rafsanjani-Abbasi, A.; Imani, A.; Hosseinpour, S.; Davoodi, A. Insights into Galvanic Corrosion Behavior of Ti-Cu Dissimilar Joint: Effect of Microstructure and Volta Potential. Materials 2018, 11, 1820. [Google Scholar] [CrossRef]
- Siddiqui, M.A.; Ullah, I.; Liu, H.; Zhang, S.; Ren, L.; Yang, K. Preliminary Study of Adsorption Behavior of Bovine Serum Albumin (BSA) Protein and Its Effect on Antibacterial and Corrosion Property of Ti-3Cu Alloy. J. Mater. Sci. Technol. 2021, 80, 117–127. [Google Scholar] [CrossRef]
- Wang, X.; Qin, P.; Sun, H.; Zhang, L. Improved Corrosion and Long-Term Immersion Behavior in 3.5 wt% NaCl Solution of Laser Powder Bed Fusion Produced Ti5Cu After Heat Treatment. Adv. Eng. Mater. 2024, 26, 2300526. [Google Scholar] [CrossRef]
- Fukuhara, M.; Kuroda, T.; Hasegawa, F. Amorphous Titanium-Oxide Supercapacitors. Sci. Rep. 2016, 6, 35870. [Google Scholar] [CrossRef]
- Li, J.; Li, S.J.; Hao, Y.L.; Yang, R. Electrochemical Characterization of Nanostructured Ti-24Nb-4Zr-8Sn Alloy in 3.5% NaCl solution. Int. J. Hydrogen Energy 2014, 39, 17452–17459. [Google Scholar] [CrossRef]
- Maleki-Ghaleh, H.; Hafezi, M.; Hadipour, M.; Nadernezhad, A.; Aghaie, E.; Behnamian, Y.; Abu Osman, N.A. Effect of Tricalcium Magnesium Silicate Coating on the Electrochemical and Biological Behavior of Ti-6Al-4V Alloys. PLoS ONE 2015, 10, e0138454. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.; Teixeira, J.; Pintão, C.; Correa, D.; Grandini, C.; Lisboa-Filho, P. Ti–15Zr and Ti–15Zr–5Mo Biomaterials Alloys: An Analysis of Corrosion and Tribocorrosion Behavior in Phosphate-Buffered Saline Solution. Materials 2023, 16, 1826. [Google Scholar] [CrossRef] [PubMed]
- Almeraya-Calderon, F.; Jáquez-Muñoz, J.; Lara-Banda, M.; Zambrano-Robledo, P.; Cabral-Miramontes, J.; Lira-Martínez, A.; Estupiñan-Lopez, F.; Gaona-Tiburcio, C. Corrosion Behavior of Titanium and Titanium Alloys in Ringer’s Solution. Int. J. Electrochem. Sci. 2022, 17, 55. [Google Scholar] [CrossRef]
- Hadebe, N.; Smit, M.; Mwamba, A.; Fowler, L.; Chown, L.; Norgren, S.; Öhman, C.; Hashe, N.; Cornish, L. Corrosion Performance of Ti-Cu Alloys Targeted for Biomedical Applications. S. Afr. J. Sci. 2022, 40, 244–250. [Google Scholar] [CrossRef]
Phases | Structure | Lattice Parameters |
---|---|---|
α-Ti | Hexagonal P63/mmc | a (Å): 2.953 c (Å): 4.709 |
Ti2Cu | Tetragonal I4/mmm | a (Å): 2.939 c (Å): 10.728 |
TiO | Cubic Fm-3m | a (Å): 4.325 |
Phase Fractions % | |||
---|---|---|---|
Composition | α-Ti | Ti2Cu | TiO |
Ti98.4–Cu1.6 | 92.4 | 7.1 | 0.5 |
Ti97–Cu3 | 83.7 | 16.0 | 0.3 |
Composition | ρth [g/cm3] | ρcal [g/cm3] | P [%] |
---|---|---|---|
Ti98.4–Cu1.6 | 4.5545 | 3.9280 | 13.8 |
Ti97–Cu3 | 4.5966 | 3.9874 | 13.3 |
Composition | EDS Analysis Point Number | Ti | Cu | O | |||
---|---|---|---|---|---|---|---|
wt.% | Σ | wt.% | σ | wt.% | σ | ||
Ti97–Cu3 | Results obtained for the inner areas of the grains | ||||||
1 | 92.2 | 0.4 | 1.2 | 1.2 | 6.6 | 0.4 | |
2 | 92.9 | 0.4 | 1.4 | 0.2 | 5.7 | 0.4 | |
3 | 92.7 | 0.4 | 1.1 | 0.2 | 6.2 | 0.4 | |
Results obtained for grain boundaries | |||||||
4 | 64.6 | 0.3 | 31.5 | 0.3 | 3.9 | 0.3 | |
5 | 66.9 | 0.3 | 25.3 | 0.3 | 4.8 | 0.3 | |
6 | 66.6 | 0.3 | 28.4 | 0.3 | 5.0 | 0.3 | |
Ti98.4–Cu1.6 | Results obtained for the inner areas of the grains | ||||||
7 | 93.1 | 0.4 | 0.7 | 0.2 | 6.2 | 0.4 | |
8 | 92.8 | 0.4 | 0.7 | 0.2 | 6.5 | 0.4 | |
9 | 92.9 | 0.2 | 1.2 | 0.2 | 5.9 | 0.4 | |
Results obtained for grain boundaries | |||||||
10 | 71.7 | 0.3 | 24.0 | 0.3 | 4.2 | 0.3 | |
11 | 70.4 | 0.3 | 24.8 | 0.3 | 4.7 | 0.3 | |
12 | 72.4 | 0.3 | 22.6 | 0.3 | 5.0 | 0.3 |
EC Parameter | cp-Ti | Ti98.4–Cu1.6 | Ti97–Cu3 | |||
---|---|---|---|---|---|---|
Value | SD | Value | SD | Value | SD | |
0.01 M PBS | ||||||
Rs [Ohm∙cm2] | 46.15 | 1.99 | 72.77 | 8.03 | 39.23 | 4.86 |
R1 [Ohm∙cm2] | 9.70 × 104 | 2.54 × 104 | 2.68 × 104 | 1.17 × 104 | 4.76 × 104 | 4.24 × 104 |
C1 [F] | 1.10 × 10−4 | 1.38 × 10−5 | 3.02 × 10−4 | 7.90 × 10−6 | 3.22 × 10−4 | 1.27 × 10−4 |
Error [10−3] | 0.32 | 0.04 | 1.63 | 0.49 | 0.76 | 0.57 |
τ1 = R1 × C1 | 10.64 | 0.35 | 8.09 | 0.09 | 15.31 | 5.36 |
RINGER | ||||||
Value | SD | Value | SD | Value | SD | |
Rs [Ohm∙cm2] | 75.47 | 8.60 | 91.71 | 12.16 | 71.28 | 5.67 |
R1 [Ohm∙cm2] | 6.94 × 104 | 5.33 × 103 | 1.90 × 104 | 2.18 × 103 | 1.71 × 104 | 3.91 × 103 |
C1 [F] | 9.94 × 10−5 | 8.27 × 10−6 | 3.39 × 10−4 | 1.42 × 10−5 | 3.60 × 10−4 | 3.01 × 10−5 |
Error [10−3] | 0.49 | 0.07 | 2.64 | 0.57 | 2.51 | 0.99 |
τ1 = R1 × C1 | 6.89 | 0.04 | 6.42 | 0.03 | 6.16 | 0.12 |
Ti | Ti98.4–Cu1.6 | Ti97Cu3 | |
---|---|---|---|
0.01 M PBS | |||
Ecorr [mV] | −590 ± 32 | −634 ± 37 | −662 ± 124 |
Icorr [µA/cm2] | 10.80 ± 2.49 | 21.94 ± 3.058 | 26.40 ± 5.53 |
νcorr [mmpy] | 0.041 ± 0.010 | 0.091 ± 0.013 | 0.109 ± 0.023 |
Rp [Ω/cm2] | 12765 ± 3392 | 6381 ± 793 | 4037 ± 1578 |
χ2∙10−3 | 0.26 ± 0.005 | 0.28 ± 0.018 | 0.23 ± 0.063 |
RINGER | |||
Ecorr [mV] | −422 ± 9 | −589 ± 10 | −675 ± 49 |
Icorr [µA/cm2] | 7.34 ± 1.16 | 24.31 ± 1.65 | 26.49 ± 8.79 |
νcorr [mmpy] | 0.028 ± 0.004 | 0.101 ± 0.007 | 0.109 ± 0.036 |
Rp [Ω/cm2] | 20249 ± 2561 | 6431 ± 414 | 4748 ± 260 |
χ2∙10−3 | 4.14 ± 0.61 | 5.38 ± 0.58 | 6.41 ± 3.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arkusz, K.; Pasik, K.; Nowak, M.; Jurczyk, M. Structural, Electrical and Corrosion Properties of Bulk Ti–Cu Alloys Produced by Mechanical Alloying and Powder Metallurgy. Materials 2024, 17, 1473. https://doi.org/10.3390/ma17071473
Arkusz K, Pasik K, Nowak M, Jurczyk M. Structural, Electrical and Corrosion Properties of Bulk Ti–Cu Alloys Produced by Mechanical Alloying and Powder Metallurgy. Materials. 2024; 17(7):1473. https://doi.org/10.3390/ma17071473
Chicago/Turabian StyleArkusz, Katarzyna, Kamila Pasik, Marek Nowak, and Mieczyslaw Jurczyk. 2024. "Structural, Electrical and Corrosion Properties of Bulk Ti–Cu Alloys Produced by Mechanical Alloying and Powder Metallurgy" Materials 17, no. 7: 1473. https://doi.org/10.3390/ma17071473
APA StyleArkusz, K., Pasik, K., Nowak, M., & Jurczyk, M. (2024). Structural, Electrical and Corrosion Properties of Bulk Ti–Cu Alloys Produced by Mechanical Alloying and Powder Metallurgy. Materials, 17(7), 1473. https://doi.org/10.3390/ma17071473