Oxidation Behavior of Pre-Strained Polycrystalline Ni3Al-Based Superalloy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material and Specimen Preparation
2.2. Oxidation Test
2.3. Microstructure Characterization
3. Results
3.1. Microstructure of Original Alloy
3.2. Microstructure of Short-Term Oxidation Products
3.3. Oxidation Kinetics of Long-Term Cyclic Oxidation
4. Discussion
4.1. Oxidation Kinetics of Long-Term Cyclic Oxidation
4.2. Growth Behavior of Short-Term Oxidation Products
4.3. Growth Behavior of Long-Term Cyclic Oxidation Products
4.4. Growth Mechanism of Oxidation Products
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Theska, F.; Street, S.R.; Pick, M.L.; Primig, S. Grain boundary microstructure-property relationships in the cast & wrought Ni-based superalloy René 41 with boron and carbon additions. Acta Mater. 2023, 258, 119235. [Google Scholar]
- Li, W.Q.; Zhao, X.B.; Cheng, Y.; Yue, Q.Z.; Xia, W.S.; Gu, Y.F. Effect of molybdenum on cyclic oxidation behavior of 4th generation nickel-based single crystal superalloys. Corros. Sci. 2023, 223, 111458. [Google Scholar] [CrossRef]
- Sridar, S.; Pizano, L.F.L.; Klecka, M.A.; Xiong, W. Achieving High Strength and Creep Resistance in Inconel 740H Superalloy through Wire-Arc Additive Manufacturing and Thermodynamic-Guided Heat Treatment. Materials 2023, 16, 6388. [Google Scholar] [CrossRef] [PubMed]
- Pollock, T.M.; Tin, S. Nickel-based superalloys for advanced turbine engines: Chemistry, microstructure and properties. J. Propul. Power 2006, 22, 361–374. [Google Scholar] [CrossRef]
- Chang, C.; Jiang, L.W.; Wu, M.L.; Li, S.S.; Han, Y.F. Effect of temperature and stress on high temperature creep behavior of Ni3Al-based single crystal superalloy. Prog. Nat. Sci. Mater. Int. 2022, 32, 267–271. [Google Scholar] [CrossRef]
- David, S.A.; Deevi, S.C. Welding of unique and advanced ductile intermetallic alloys for high-temperature applications. Sci. Technol. Weld. Join. 2017, 22, 681. [Google Scholar] [CrossRef]
- Deevi, S.C.; Sikka, V.K. Nickel and iron aluminides: An overview on properties, processing, and applications. Intermetallics 1996, 4, 357–375. [Google Scholar] [CrossRef]
- Zhao, Y.H.; Li, Y.; Sun, Y.W.; Han, R.H.; Li, X.P.; Xie, Y.S.; Zheng, H.X.; Zhao, C.Z. Microstructure and mechanical properties of a novel polycrystalline Ni3Al-based intermetallic alloy. Intermetallics 2023, 158, 107908. [Google Scholar] [CrossRef]
- Wu, J.; Li, C.; Liu, Y.C.; Wu, Y.T.; Guo, J.Y.; Li, H.J.; Wang, H.P. Effect of annealing treatment on microstructure evolution and creep behavior of a multiphase Ni3Al-based superalloy. Mater. Sci. Eng. A 2019, 743, 623–635. [Google Scholar] [CrossRef]
- Guo, J.Y.; Li, Y.F.; Li, C.; Yu, L.M.; Li, H.J.; Wang, Z.M. Isothermal oxidation behavior of micro-regions in multiphase Ni3Al-based superalloys. Mater. Charact. 2021, 171, 110748. [Google Scholar] [CrossRef]
- Zhao, Y.H.; Chang, Y.P.; Li, X.P.; Xie, Y.S.; Sun, Y.S.; Zhang, H.X.; Zhao, C.Z. P phase precipitation and strengthening behavior of a novel polycrystalline Ni3Al-based intermetallic alloy at 1100 °C. Acta Mater. 2024, 265, 119601. [Google Scholar] [CrossRef]
- He, X.; Liu, C.; Yang, Y.K.; Ding, J.; Chen, X.G.; Xia, X.C.; Tang, Y.; Liu, Y.C. Directional coarsening behavior of primary γ′ phase in Ni3Al-based superalloy during aging heat treatment. J. Alloys Compd. 2021, 872, 159674. [Google Scholar] [CrossRef]
- Ding, J.; Jiang, S.; Wu, Y.T.; Li, Y.M.; Xia, X.C.; Li, C.; Liu, Y.C. Precipitation and growth behavior of mushroom-like Ni3Al. Mater. Lett. 2018, 211, 5–8. [Google Scholar] [CrossRef]
- Kobayashi, S.; Demura, M.; Kishida, K.; Hirano, T. Tensile and bending deformation of Ni3Al heavily cold-rolled foil. Intermetallics 2005, 13, 608–614. [Google Scholar] [CrossRef]
- Polkowski, W.; Jozwik, P.; Bojar, Z. Differential speed rolling of Ni3Al based intermetallic alloy-Analysis of the deformation process. Mater. Lett. 2015, 139, 46–49. [Google Scholar] [CrossRef]
- Wu, C.H.; Jiang, R.; Zhang, L.C.; Wang, Y.C.; Chen, Y.; Song, Y.D. Oxidation accelerated dwell fatigue crack growth mechanisms of a coarse grained PM Ni-based superalloy at elevated temperatures. Corros. Sci. 2022, 209, 110702. [Google Scholar] [CrossRef]
- Tan, L.; Ren, X.; Sridharan, K.; Allen, T.R. Effect of shot-peening on the oxidation of alloy 800H exposed to supercritical water and cyclic oxidation. Corros. Sci. 2008, 50, 2040–2046. [Google Scholar] [CrossRef]
- Kuenzly, J.D.; Douglass, D.L. The Oxidation mechanism of Ni3Al Containing Yttrium. Oxid. Met. 1974, 8, 140–177. [Google Scholar] [CrossRef]
- Liu, H.; Xu, M.M.; Li, S.; Bao, Z.B.; Zhu, S.L.; Wang, F.H. Improving cyclic oxidation resistance of Ni3Al-based single crystal superalloy with low-diffusion platinum-modified aluminide coating. J. Mater. Sci. Technol. 2020, 54, 132–143. [Google Scholar] [CrossRef]
- Xu, B.Q.; Jiang, J.S.; Zou, Z.H.; Wang, W.Z.; Zhao, X.F.; Liu, Y.Z.; Xiao, P. Time-dependent spalling behavior of thermally grown oxide induced by room temperature interfacial deformation. Surf. Coat. Technol. 2018, 334, 164–172. [Google Scholar] [CrossRef]
- Chen, H.; Fan, M.; Li, L.; Zhu, W.; Li, H.N.; Li, J.; Yin, Y. Effects of internal oxide contents on the oxidation and β-phase depletion behaviour in HOVF CoNiCrAlY coatings. Surf. Coat. Technol. 2021, 424, 127666. [Google Scholar] [CrossRef]
- Li, J.A.; Peng, Y.Y.; Zhang, J.B.; Jiang, S.; Yin, S.P.; Ding, J.; Wu, Y.T.; Wu, J.; Chen, X.G.; Xia, X.C.; et al. Cyclic oxidation behavior of Ni3Al-basedsuperalloy. Vacuum 2019, 169, 108938. [Google Scholar] [CrossRef]
- Li, Y.M.; Lv, H.S.; Li, Y.B.; Fan, N.W. Effect of Pre-Oxidation on High-Temperature Oxidation Behavior of Al-Si Coating on Nickel-Based Superalloy. Materials 2022, 15, 7440. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.J.; Yang, B.B.; Lai, R.L.; Liu, J.T.; Yu, S.; Li, Y.P. Effect of Nb addition on the internal oxidation of novel Ni-base superalloy. Corros. Sci. 2022, 198, 110100. [Google Scholar] [CrossRef]
- Ma, S.Y.; Ding, Q.Q.; Wei, X.; Zhang, Z.; Bei, H.B. The Effects of Alloying Elements Cr, Al, and Si on Oxidation Behaviors of Ni-Based Superalloys. Materials 2022, 15, 7352. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.J.; Zhang, R.; Cui, C.Y.; Zhou, Y.Z.; Sun, X.F.; Qu, J.L.; Gu, Y.; Du, J.H.; Tan, Y. Deformation micro-twinning arising at high temperatures in a Ni-Co-based superalloy. J. Mater. Sci. Technol. 2022, 115, 10–18. [Google Scholar] [CrossRef]
- Garg, M.; Grewal, H.S.; Sharma, R.K.; Gwalani, B.; Arora, H.S. Limiting oxidation of high entropy alloy via high strain-rate deformation: Insights from electrochemical impedance spectroscopy. Mater. Chem. Phys. 2023, 294, 127017. [Google Scholar] [CrossRef]
- Garg, M.; Grewal, H.S.; Sharma, R.K.; Gwalani, B.; Arora, H.S. High oxidation resistance of AlCoCrFeNi high entropy alloy through severe shear deformation processing. J. Alloys Compd. 2022, 917, 165385. [Google Scholar] [CrossRef]
- Lee, C.M.; Han, Y.S.; Jeong, J.S.; Jung, W.S.; Song, S.H.; Kim, J.S. Effect of pre-strain on oxidation behaviour of nickel-based superalloys in air at 700 °C. Corros. Sci. 2022, 200, 110229. [Google Scholar] [CrossRef]
- Zhou, C.H.; Ma, H.T.; Wang, L. Comparative study of oxidation kinetics for pure nickel oxidized under tensile and compressive stress. Corros. Sci. 2010, 52, 210–215. [Google Scholar] [CrossRef]
- Zhou, C.H.; Pan, R.Y.; Ma, H.T.; Zhang, H.; Guan, X.G.; Mao, N.N.; Sun, F.J. Oxidation Kinetics Researches under the Condition of Compressive Loading. IOP Conf. Ser. Mate. Sci. Eng. 2018, 389, 012017. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, M.; Jin, J.S.; Gong, P.; Wang, X.Y. Oxidation behavior of CoCrFeMnNi high entropy alloy after plastic deformation. Corros. Sci. 2020, 163, 108285. [Google Scholar] [CrossRef]
- Qi, H.Y.; Liang, X.B.; Li, S.L.; Yang, X.G. High-temperature oxidation behavior of DZ125 Ni-based superalloy under tensile stress. Rare Met. 2016, 41, 4188–4193. [Google Scholar] [CrossRef]
- Barnard, B.R.; Liaw, P.K.; Buchanan, R.A.; Klarstrom, D.L. Affects of applied stresses on the isothermal and cyclic high-temperature oxidation behavior of superalloys. Mater. Sci. Eng. A 2010, 527, 3813–3821. [Google Scholar] [CrossRef]
- GB/T 7314-2017. Metallic Materials-Compression Test Method at Room Temperature. Standardization Administration of the People’s Republic of China: Beijing, China.
- Zou, Y.; Li, S.L.; Liu, S.H.; Li, J.K.; Li, Y. Improved mechanical and corrosion properties of CrMnFeCoNi high entropy alloy with cold rolling and post deformation annealing process. J. Alloys Compd. 2021, 887, 161416. [Google Scholar] [CrossRef]
- Ding, Q.Q.; Shen, Z.J.; Xiang, S.S.; Tian, H.; Li, J.X.; Zhang, Z. In-situ environmental TEM study of γ′-γ phase transformation induced by oxidation in a nickel-based single crystal superalloy. J. Alloys Compd. 2015, 651, 255–258. [Google Scholar] [CrossRef]
- Sakaguchi, M.; Ike, M.; Okazaki, M. Microstructural changes in a single crystal Ni-base superalloy induced by plastic straining. Mater. Sci. Eng. A 2012, 534, 253–259. [Google Scholar] [CrossRef]
- Li, S.C.; Liang, H.Y.; Li, C.; Liu, Y.C. Lattice mismatch in Ni3Al-based alloy for efficient oxygen evolution. J. Mater. Sci. Technol. 2022, 106, 19–27. [Google Scholar] [CrossRef]
- Kim, J.H.; Hwang, I.S. evelopment of an in situ Raman spectroscopic system for surface oxide films on metals and alloys in high temperature water. Nucl. Eng. Des. 2005, 235, 1029–1040. [Google Scholar] [CrossRef]
- Maslar, J.E.; Hurst, W.S.; Bowers, W.J.; Hendrick, J.H.; Aquino, M.I. In Situ Raman Spectroscopic Investigation of Nickel Hydrothermal Corrosion. Corros. Sci. 2001, 58, 225–231. [Google Scholar] [CrossRef]
- Ashkin, M.; Parker, J.H.; Feldam, D.W. Temperature dependence of the Raman lines of α-Al2O3. Solid State Commun. 1968, 6, 343–346. [Google Scholar] [CrossRef]
- Aminzadeh, A. Excitation Frequency Dependence and Fluorescence in the Raman Spectra of Al2O3. Appl. Spectrosc. 1997, 54, 817–819. [Google Scholar] [CrossRef]
- ElBatal, F.H.; Morsi, R.M.; Ouis, M.A.; Marzouk, S.Y. UV–visible, Raman and E.S.R. studies of gamma-irradiated NiO-doped sodium metaphosphate glasses. Spectrochimca Acta Part A 2010, 77, 717–726. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Song, P.; Khan, A.; Feng, J.; Chen, K.L.; Zang, J.J.; Xiong, X.P.; Lu, J.G.; Lu, J.S. Influence of water vapour on the HfO2 distribution within the oxide layer on CoNiCrAlHf alloys. J. Alloys Compd. 2018, 739, 690–699. [Google Scholar] [CrossRef]
- Shao, Y.Y.; Yuan, J.H.; Li, X.N.; Li, Z.M.; Hu, Y.L.; Cheng, Z.L.; Liu, R.W.; Zhang, R.; Zheng, R.; Hou, Y.D.; et al. Compositional dependence of high temperature oxidation resistance in the L12-strengthened high-thermostability copper alloys. Corros. Sci. 2023, 220, 111281. [Google Scholar] [CrossRef]
- Liu, L.; He, J.; Zhou, B.Y.; Fan, D.Y.; Guo, H.B. The importance of grain boundaries on the reactive elements effect in β-NiAlHf alloy. Mater. Lett. 2023, 342, 134305. [Google Scholar] [CrossRef]
- Xiao, J.H.; Xiong, Y.; Wang, L.; Jiang, X.W.; Wang, D.; Li, K.W.; Dong, J.S.; Lou, L.H. Oxidation behavior of high Hf nickel-based superalloy in air at 900, 1000 and 1100 °C. Int. J. Miner. Metall. Mater. 2021, 28, 1957–1965. [Google Scholar] [CrossRef]
- Cao, X.Z.; He, J.; Chen, H.; Zhou, B.Y.; Liu, L.; Guo, H.B. The formation mechanisms of HfO2 located in different positions of oxide scales on ni-al alloys. Corros. Sci. 2020, 167, 108481. [Google Scholar] [CrossRef]
- Chu, C.H.; Guo, Q.Y.; Guan, Y.; Qiao, Z.X.; Liu, Y.C. Deformation mechanisms of a γʹ phase strengthened CoNi-based superalloy at high temperatures. Mater. Sci. Eng. A 2022, 833, 142587. [Google Scholar] [CrossRef]
- Chen, H.; Couvant, T.; Seyeux, A.; Duhamel, C.; Marcus, P. The effect of elastic and plastic strain on surface and intergranular oxidation of alloy 600 in simulated PWR primary water. Corros. Sci. 2023, 221, 111346. [Google Scholar] [CrossRef]
- Wood, G.C.; Chattopadhyay, B. Transient oxidation of Ni-based alloys. Corros. Sci. 1970, 10, 471–476. [Google Scholar] [CrossRef]
C | Cr | Al | Ti | Hf | W | Mo | B | Fe | Si | Mn | Ni |
---|---|---|---|---|---|---|---|---|---|---|---|
0.06–0.2 | 7.4–8.2 | 7.6–8.5 | 0.6–1.2 | 0.3–0.9 | 1.5–2.5 | 3.5–5.5 | <0.05 | <2 | <0.5 | <0.5 | Bal. |
Site | Composition from EDS (at. %) | |||||
---|---|---|---|---|---|---|
Al | Cr | Fe | Ni | O | Hf | |
1 | 3.90 | 4.89 | 4.04 | 14.56 | 55.95 | 16.66 |
2 | 15.17 | 3.10 | 4.79 | 28.01 | 48.93 | 0.01 |
3 | 26.26 | 3.39 | 5.05 | 15.04 | 50.25 | 0.01 |
4 | 28.38 | 0.5 | 0.54 | 1.39 | 69.17 | 0.02 |
5 | 26.71 | 0.31 | 0.39 | 4.74 | 64.23 | 3.62 |
6 | 24.71 | 0.29 | 1.59 | 3.73 | 64.94 | 4.73 |
7 | 24.94 | 0.23 | 1.36 | 3.00 | 66.43 | 4.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, R.; Ding, J.; Wang, Y.; Feng, H.; Chen, L.; Yang, J.; Xia, X.; Zhao, Y.; Li, J.; Ji, S.; et al. Oxidation Behavior of Pre-Strained Polycrystalline Ni3Al-Based Superalloy. Materials 2024, 17, 1561. https://doi.org/10.3390/ma17071561
Guo R, Ding J, Wang Y, Feng H, Chen L, Yang J, Xia X, Zhao Y, Li J, Ji S, et al. Oxidation Behavior of Pre-Strained Polycrystalline Ni3Al-Based Superalloy. Materials. 2024; 17(7):1561. https://doi.org/10.3390/ma17071561
Chicago/Turabian StyleGuo, Rui, Jian Ding, Yujiang Wang, Haomin Feng, Linjun Chen, Jie Yang, Xingchuan Xia, Yingli Zhao, Jun Li, Shuang Ji, and et al. 2024. "Oxidation Behavior of Pre-Strained Polycrystalline Ni3Al-Based Superalloy" Materials 17, no. 7: 1561. https://doi.org/10.3390/ma17071561
APA StyleGuo, R., Ding, J., Wang, Y., Feng, H., Chen, L., Yang, J., Xia, X., Zhao, Y., Li, J., Ji, S., & Luo, J. (2024). Oxidation Behavior of Pre-Strained Polycrystalline Ni3Al-Based Superalloy. Materials, 17(7), 1561. https://doi.org/10.3390/ma17071561