E-Band InAs Quantum Dot Micro-Disk Laser with Metamorphic InGaAs Layers Grown on GaAs/Si (001) Substrate
Abstract
:1. Introduction
2. Experimental Details
2.1. Materials’ Growth
2.2. Material Characterizations
2.3. Device Fabrication
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Asghari, M.; Krishnamoorthy, A.V. Silicon photonics: Energy-efficient communication. Nat. Photonics 2011, 5, 268–270. [Google Scholar] [CrossRef]
- Hu, Y.; Liang, D.; Mukherjee, K.; Li, Y.; Zhang, C.; Kurczveil, G.; Huang, X.; Beausoleil, R.G. III/V-on-Si MQW lasers by using a novel photonic integration method of regrowth on a bonding template. Light Sci. Appl. 2019, 8, 93. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Liang, D.; Beausoleil, R.G. An advanced III-V-on-silicon photonic integration platform. Opto-Electron. Adv. 2021, 4, 200094. [Google Scholar] [CrossRef]
- Shekhar, S.; Bogaerts, W.; Chrostowski, L.; Bowers, J.E.; Hochberg, M.; Soref, R.; Shastri, B.J. Roadmapping the next generation of silicon photonics. Nat. Commun. 2024, 15, 751. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Li, W.; Wu, J.; Jiang, Q.; Tang, M.; Shutts, S.; Elliott, S.N.; Sobiesierski, A.D.; Seeds, A.J.; Ross, I.M. Electrically pumped continuous-wave III-V quantum dot lasers on silicon. Nat. Photonics 2016, 10, 307–311. [Google Scholar] [CrossRef]
- Jhang, Y.H.; Mochida, R.; Tanabe, K.; Takemasa, K.; Sugawara, M.; Iwamoto, S.; Arakawa, Y. Direct modulation of 1.3 μm quantum dot lasers on silicon at 60 °C. Opt. Express 2016, 24, 18428–18435. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.Y.; Peters, J.D.; Huang, X.; Jung, D.; Norman, J.C.; Lee, M.L.; Gossard, A.C.; Bowers, J.E. Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si. Opt. Lett. 2017, 42, 338–341. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.Q.; Feng, Q.; Guo, J.J.; Guo, M.C.; Wang, J.H.; Wang, Z.H.; Wang, T.; Zhang, J.J. InAs/GaAs quantum dot narrow ridge lasers epitaxially grown on SOI substrates for silicon photonic integration. Opt. Express 2020, 28, 26555–26563. [Google Scholar] [CrossRef] [PubMed]
- Lv, Z.; Wang, S.; Wang, S.; Chai, H.; Meng, L.; Yang, X.; Yang, T. Ultra-high thermal stability InAs/GaAs quantum dot lasers grown on on-axis Si (001) with a record-high continuous-wave operating temperature of 150 °C. Opt. Express 2023, 31, 24173–24182. [Google Scholar] [CrossRef]
- Wei, W.Q.; He, A.; Yang, B.; Wang, Z.H.; Huang, J.Z.; Han, D.; Ming, M.; Guo, X.; Su, Y.; Zhang, J.J.; et al. Monolithic integration of embedded III-V lasers on SOI. Light Sci. Appl. 2023, 12, 84. [Google Scholar] [CrossRef]
- Feng, K.; Shang, C.; Hughes, E.; Clark, A.; Koscica, R.; Ludewig, P.; Harame, D.; Bowers, J. Quantum Dot Lasers Directly Grown on 300 mm Si Wafers: Planar and In-Pocket. Photonics 2023, 10, 534. [Google Scholar] [CrossRef]
- Tian, B.; Wang, Z.; Pantouvaki, M.; Absil, P.; Van Campenhout, J.; Merckling, C.; Van Thourhout, D. Room Temperature O-band DFB Laser Array Directly Grown on (001) Silicon. Nano Lett. 2017, 17, 559–564. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, S.; Yu, Y.; Zhou, L.; Liu, L.; Yang, C.; Liao, M.; Tang, M.; Wu, J.; Li, W.; et al. Monolithic quantum-dot distributed feedback laser array on silicon. Optica 2018, 5, 528–533. [Google Scholar] [CrossRef]
- Shi, Y.; Baryshnikova, M.; Mols, Y.; Pantouvaki, M.; Van Campenhout, J.; Kunert, B.; Van Thourhout, D. Loss-Coupled DFB Nano-ridge Laser Monolithically Grown on a Standard 300-mm Si Wafer. Opt. Express 2019, 29, 14649–14657. [Google Scholar] [CrossRef]
- Wan, Y.; Norman, J.C.; Tong, Y.; Kennedy, M.J.; He, W.; Selvidge, J.; Shang, C.; Dumont, M.; Malik, A.; Tsang, H.K.; et al. 1.3 µm Quantum Dot-Distributed Feedback Lasers Directly Grown on (001) Si. Laser Photonics Rev. 2020, 14, 2000037. [Google Scholar] [CrossRef]
- Wei, W.Q.; Zhang, J.Y.; Wang, J.H.; Cong, H.; Guo, J.J.; Wang, Z.H.; Xu, H.X.; Wang, T.; Zhang, J.J. Phosphorus-free 1.5 µm InAs quantum-dot microdisk lasers on metamorphic InGaAs/SOI platform. Opt. Lett. 2020, 45, 2042–2045. [Google Scholar] [CrossRef] [PubMed]
- Shi, B.; Zhu, S.; Li, Q.; Tang, C.W.; Wan, Y.; Hu, E.L.; Lau, K.M. 1.55 μm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si. Appl. Phys. Lett. 2017, 110, 121109. [Google Scholar] [CrossRef]
- Wan, Y.; Norman, J.; Li, Q.; Kennedy, M.J.; Liang, D.; Zhang, C.; Huang, D.; Zhang, Z.; Liu, A.Y.; Torres, A.; et al. 1.3 μm submilliamp threshold quantum dot micro-lasers on Si. Optica 2017, 4, 940–944. [Google Scholar] [CrossRef]
- Zhou, T.; Tang, M.; Xiang, G.; Xiang, B.; Hark, S.; Martin, M.; Baron, T.; Pan, S.; Park, J.-S.; Liu, Z.; et al. Continuous-wave quantum dot photonic crystal lasers grown on on-axis Si (001). Nat. Commun. 2020, 11, 977. [Google Scholar] [CrossRef]
- Ma, J.; Zhou, T.; Tang, M.; Li, H.; Zhang, Z.; Xi, X.; Martin, M.; Baron, T.; Liu, H.; Zhang, Z.; et al. Room-temperature continuous-wave topological Dirac-vortex microcavity lasers on silicon. Light Sci. Appl. 2023, 12, 255. [Google Scholar] [CrossRef]
- ITU-T. Characteristics of a Single-Mode Optical Fibre and Cable; International Telecommunication Union: Geneva, Switzerland, 2016. [Google Scholar]
- Understand Fiber Attenuation. Available online: http://fowiki.com/b/understand-fiber-attenuation/ (accessed on 2 June 2015).
- Zhu, X.; Cassidy, D.T.; Hamp, M.J.; Thompson, D.A.; Robinson, B.J.; Zhao, Q.C.; Davies, M. 1.4-μm InGaAsP-InP strained multiple-quantum-well laser for broad-wavelength tunability. IEEE Photonics Technol. Lett. 1997, 9, 1202–1204. [Google Scholar]
- Ha, W.; Gambin, V.; Wistey, M.; Kim, S.; Harris, J. Multiple-quantum-well GaInNAs-GaNAs ridge-waveguide laser diodes operating out to 1.4 μm. Photonics Technol. Lett. IEEE 2002, 14, 591–593. [Google Scholar] [CrossRef]
- Mi, Z.; Bhattacharya, P.K.; Yang, J. Growth and characteristics of ultralow threshold 1.45 μm metamorphic InAs tunnel injection quantum dot lasers on GaAs. Appl. Phys. Lett. 2006, 89, 153109. [Google Scholar] [CrossRef]
- Wei, W.Q.; Wang, J.H.; Zhang, B.; Zhang, J.Y.; Wang, H.L.; Feng, Q.; Xu, H.X.; Wang, T.; Zhang, J.J. InAs QDs on (111)-faceted Si (001) hollow substrates with strong emission at 1300 nm and 1550 nm. Appl. Phys. Lett. 2018, 113, 053107. [Google Scholar] [CrossRef]
- Ledentsov, N.N.; Kovsh, A.R.; Zhukov, A.E.; Maleev, N.A.; Mikhrin, S.; Vasil’ev, A.P.; Semenova, E.; Maximov, M.V.; Shernyakov, Y.; Kryzhanovskaya, N.V. High performance quantum dot lasers on GaAs substrates operating in 1.5/spl mu/m range. Electron. Lett. 2003, 39, 1126–1128. [Google Scholar] [CrossRef]
- Kwoen, J.; Imoto, T.; Arakawa, Y. InAs/InGaAs Quantum Dot Lasers on Multi-Functional Metamorphic Buffer Layers. Opt. Express 2021, 29, 29378. [Google Scholar] [CrossRef] [PubMed]
- Kwoen, J.; Zhan, W.; Arakawa, Y. E-band InAs quantum dot laser on InGaAs metamorphic buffer layer with filter layer. Electron. Lett. 2021, 57, 567–568. [Google Scholar] [CrossRef]
- Wei, W.Q.; Huang, J.Z.; Ji, Z.T.; Han, D.; Yang, B.; Chen, J.J.; Qin, J.L.; Cui, Y.O.; Wang, Z.H.; Wang, T.; et al. Reliable InAs quantum dot lasers grown on patterned Si (001) substrate with embedded hollow structures assisted thermal stress relaxation. J. Phys. D Appl. Phys. 2022, 55, 405105. [Google Scholar] [CrossRef]
- Xu, Z.Y.; Lu, Z.D.; Yang, X.P.; Yuan, Z.L.; Zheng, B.Z.; Ge, W.K.; Wang, J.; Chang, L.L. Carrier relaxation and thermal activation of localized excitons in self-organized InAs multilayers grown on GaAs substrates. Phys. Rev. B 1996, 54, 11528–11531. [Google Scholar] [CrossRef]
- Anthony, S. Lasers; University Science Books: Mill Valley, CA, USA, 1986. [Google Scholar]
- Varshni, Y.P. Temperature dependence of the energy gap in semiconductors. Physica 1967, 34, 149–154. [Google Scholar] [CrossRef]
- Torchynska, T.V.; Hernandez, A.V.; Polupan, G.; Velazquez Lozada, E. Photoluminescence study and parameter evaluation in InAs quantum dot-in-a-well structures. Mater. Sci. Eng. B 2011, 176, 331–333. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, W.; Wei, W.; Han, D.; Ming, M.; Zhang, J.; Wang, Z.; Zhang, X.; Wang, T.; Zhang, J. E-Band InAs Quantum Dot Micro-Disk Laser with Metamorphic InGaAs Layers Grown on GaAs/Si (001) Substrate. Materials 2024, 17, 1916. https://doi.org/10.3390/ma17081916
Liang W, Wei W, Han D, Ming M, Zhang J, Wang Z, Zhang X, Wang T, Zhang J. E-Band InAs Quantum Dot Micro-Disk Laser with Metamorphic InGaAs Layers Grown on GaAs/Si (001) Substrate. Materials. 2024; 17(8):1916. https://doi.org/10.3390/ma17081916
Chicago/Turabian StyleLiang, Wenqian, Wenqi Wei, Dong Han, Ming Ming, Jieyin Zhang, Zihao Wang, Xinding Zhang, Ting Wang, and Jianjun Zhang. 2024. "E-Band InAs Quantum Dot Micro-Disk Laser with Metamorphic InGaAs Layers Grown on GaAs/Si (001) Substrate" Materials 17, no. 8: 1916. https://doi.org/10.3390/ma17081916
APA StyleLiang, W., Wei, W., Han, D., Ming, M., Zhang, J., Wang, Z., Zhang, X., Wang, T., & Zhang, J. (2024). E-Band InAs Quantum Dot Micro-Disk Laser with Metamorphic InGaAs Layers Grown on GaAs/Si (001) Substrate. Materials, 17(8), 1916. https://doi.org/10.3390/ma17081916