Optical, Structural, and Synchrotron X-ray Absorption Studies for GaN Thin Films Grown on Si by Molecular Beam Epitaxy
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Surphase Morphology and Nomarski Microscopy
3.2. Structural Characterization by High-Resolution X-ray Diffraction
3.3. Spectroscopic Ellipsometry Measurements and Analysis of GaN Films on Si
3.4. Raman (532 nm) and Resonant Raman (325 nm) of Five GaN/Si
3.5. Raman Spectral Analyses by Spatial Correlation Model of Five GaN/Si
3.6. Near-Edge X-ray Absorption Fine Structure (NEXAFS) of GaN on Si
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nakamura, S.; Nakamura, S.; Pearton, S.; Fasol, G. The Blue Laser Diode—The Complete Story; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Feng, Z.C. (Ed.) Handbook of Solid-State Lighting and LEDs; CRC Press, Taylor & Francis Group: London, UK, 2017. [Google Scholar]
- Fay, P.; Jena, D.; Maki, P. (Eds.) High-Frequency GaN Electronic Devices; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Di Paolo Emilio, M. GaN and SiC Power Devices From Fundamentals to Applied Design and Market Analysis; Springer: Berlin/Heidelberg, Germany, 2024. [Google Scholar]
- Gibiino, G.P.; Angelotti, A.M.; Santarelli, A.; Florian, C. Microwave Characterization of Trapping Effects in 100-nm GaN-on-Si HEMT Technology. IEEE Microw. Wirel. Compon. Lett. 2019, 29, 604–606. [Google Scholar] [CrossRef]
- Tong, W.; Harris, M.; Wagner, B.K.; Yu, J.W.; Lin, H.C.; Feng, Z.C. Pulse Source Injection Molecular Beam Epitaxy and Characterization of Nano-scale Thin GaN Layers on Si substrates. Surf. Coat. Technol. 2002, 200, 3230. [Google Scholar] [CrossRef]
- Wang, Z.T.; Yamada-Takamura, Y.; Fujikawa, Y.; Sakurai, T.; Xue, Q.K. Atomistic study of GaN surface grown on Si(111). Appl. Phys. Lett. 2005, 97, 032110. [Google Scholar] [CrossRef]
- Wu, Y.L.; Feng, Z.C.; Lee, J.F.; Tong, W.; Wagner, B.K.; Ferguson, I.; Lu, W. X-ray absorption and Raman study of GaN films grown on different substrates by different techniques. Thin Solid Film. 2010, 518, 7475. [Google Scholar] [CrossRef]
- Hestroffer, K.; Daudin, B. A RHEED investigation of self-assembled GaN nanowire nucleation dynamics on bare Si and on Si covered with a thin AlN buffer layer. Phys. Status Solidi RRL 2013, 7, 835–839. [Google Scholar] [CrossRef]
- Lin, P.-J.; Huang, S.-Y.; Wang, W.-K.; Chen, C.-L.; Chung, B.-C.; Wuu, D.-S. Controlling the stress of growing GaN on 150-mm Si (111) in an AlN/GaN strained layer superlattice. Appl. Surf. Sci. 2016, 362, 434. [Google Scholar] [CrossRef]
- Seredin, P.V.; Lenshin, A.S.; Mizerov, A.M.; Leiste, H.; Rinke, M. Structural, optical and morphological properties of hybrid heterostructures on the basis of GaN grown on compliant substrate por-Si (111). Appl. Surf. Sci. 2019, 476, 1049. [Google Scholar] [CrossRef]
- Li, Y.; Wang, W.; Li, X.; Huang, L.; Lin, Z.; Chen, X.; Li, G. Stress and dislocation control of GaN epitaxial films grown on Si substrates and their application in high-performance light-emitting diodes. J. Alloys Compd. 2019, 771, 1000. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, X.; Feng, Y.; Li, Y.; Wang, M.; Shen, J.; Wei, L.; Liu, D.; Wu, S.; Cai, Z.; et al. Vacancy-engineering-induced dislocation inclination in III-nitrides on Si substrates. Phys. Rev. Mater. 2020, 4, 073402. [Google Scholar] [CrossRef]
- Seredin, P.V.; Goloshchapov, D.L.; Arsentyev, I.N.; Sharofidinov, S.; Kasatkin, I.A.; Prutskij, T. HVPE fabrication of GaN sub-micro pillars on preliminarily treated Si (001) substrate. Opt. Mater. 2021, 117, 111130. [Google Scholar] [CrossRef]
- Shen, J.; Yang, X.; Huang, H.; Liu, D.; Cai, Z.; Chen, Z.; Ma, C.; Sang, L.; Wang, X.; Ge, W.; et al. High-mobility n−-GaN drift layer grown on Si substrates. Appl. Phys. Lett. 2021, 118, 222106. [Google Scholar] [CrossRef]
- Zhong, Y.; Zhang, J.; Wu, S.; Jia, L.; Yang, X.; Liu, Y.; Zhang, Y.; Sun, Q. A review on the GaN-on-Si power electronic devices. Fundam. Res. 2022, 2, 462. [Google Scholar] [CrossRef]
- Zhu, S.; Shan, X.; Lin, R.; Qiu, P.; Wang, Z.; Lu, X.; Yan, L.; Cui, X.; Tian, P. Characteristics of GaN-on-Si Green Micro-LED for Wide Color Gamut Display and High-Speed Visible Light Communication. ACS Photonics 2023, 10, 92. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, X.; Liu, X.; Shen, J.; Cai, Z.; Yang, H.; Fu, X.; Wang, M.; Tang, N.; Xu, F.; et al. Terrace Engineering of the Buffer Layer: Laying the Foundation of Thick GaN Drift Layer on Si Substrates. Adv. Electron. Mater. 2023, 9, 2300148. [Google Scholar] [CrossRef]
- Zhou, S.; Wan, S.; Zou, B.; Yang, Y.; Sun, H.; Zhou, Y.; Liang, J. Interlayer Investigations of GaN Heterostructures Integrated into Silicon Substrates by Surface Activated Bonding. Crystals 2023, 13, 217. [Google Scholar] [CrossRef]
- Qi, L.; Zhang, X.; Chong, W.C.; Lau, K.M. Monolithically integrated high-resolution full-color GaN-on-Si micro-LED microdisplay. Photonics Res. 2023, 11, 109. [Google Scholar] [CrossRef]
- Zhang, Y.; Wen, C.; Xing, Y.-K.; Cao, G.-B.; Zhang, R.-X.; Li, X.-J. Improving the rectification characteristics of GaN/Si heterojunction by constructing an interpenetrating two-phase interface layer. Appl. Surf. Sci. 2024, 649, 159016. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, S.; Ma, J.; Yao, Y.; Wang, B.; Xu, S.; Hou, B.; Liu, Z.; Zhang, J.; Hao, Y. More than 60% RF loss reduction and improved crystal quality of GaN-on-Si achieved by in-situ doping tert-butylphosphorus. J. Cryst. Growth 2024, 625, 127443. [Google Scholar] [CrossRef]
- Malin, T.; Maidebura, Y.; Mansurov, V.; Gavrilova, T.; Gutakovsky, A.; Vdovin, V.; Ponomarev, S.; Loshkarev, I.; Osinnykh, I.; Volodin, V.; et al. Influence of substrate nitridation conditions and buffer layer structures on the crack-free GaN layers on silicon substrate grown by ammonia-assisted molecular beam epitaxy. Thin Solid Film. 2024, 791, 140246. [Google Scholar] [CrossRef]
- Wang, J.; Houdré, R. Strain engineering and strain measurement by spring tethers on suspended epitaxial GaN-on-Si photonic crystal devices. Semicond. Sci. Technol. 2024, 39, 025010. [Google Scholar] [CrossRef]
- Zamir, S.; Meyler, B.; Salzman, J. Lateral confined epitaxy of GaN layers on Si substrates. J. Cryst. Growth 2001, 230, 341–345. [Google Scholar] [CrossRef]
- Yu, J.W.; Lin, H.C.; Feng, Z.C.; Wang, L.S.; Chua, S.J. Control and Improvement of Crystalline Cracking from GaN Thin films grown on Si by Metal-organic Chemical Vapor Deposition. Thin Solid Film. 2006, 498, 108–112. [Google Scholar] [CrossRef]
- Kim, M.-H.; Do, Y.-G.; Kang, H.C.; Noh, D.Y.; Park, S.-J. Effects of step-graded AlxGa1-xN interlayer on properties of GaN grown on Si (111) using ultrahigh vacuum chemical vapor deposition. Appl. Phys. Lett. 2001, 79, 2713. [Google Scholar] [CrossRef]
- Liu, J.; Huang, Y.; Sun, X.; Zhan, X.; Sun, Q.; Gao, H.; Feng, M.; Zhou, Y.; Ikeda, M.; Yang, H. Wafer-scale crack-free 10 μm-thick GaN with a dislocation density of 5.8 ×107 cm−2 grown on Si. J. Phys. D Appl. Phys. 2019, 52, 425102. [Google Scholar] [CrossRef]
- Lu, H.; Wang, L.; Liu, Y.; Zhang, S.; Yang, Y.; Saravade, V.; Feng, Z.C.; Klein, B.; Ferguson, I.T.; Wan, L.; et al. A comparative investigation for optical properties of GaN thin films grown on c- and m-face sapphire by metalorganic chemical vapor deposition. Semicond. Sci. Technol. 2022, 37, 065021. [Google Scholar] [CrossRef]
- Wei, W.; Wang, J.; Liu, Y.; Peng, Y.; Maraj, M.; Peng, B.; Wang, Y.; Sun, W. Effects of Thermal Annealing on Optical Properties of Be-Implanted GaN Thin Films by Spectroscopic Ellipsometry. Crystals 2020, 10, 439. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Y.; Wang, L.; Zhang, S.; Lu, H.; Peng, Y.; Wei, W.; Yang, J.; Feng, Z.C.; Wan, L.; et al. Optical and structural properties of aluminum nitride epi-films at room and high temperature. Materials 2023, 16, 7442. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Z.; Long, X.; Zhang, X.; Wei, J.; Huang, D.; Ferguson, I.T.; Feng, Z.C. Effects of thickness and interlayer on optical properties of AlN films at room and high temperature. J. Vac. Sci. Technol. A 2021, 39, 043402. [Google Scholar] [CrossRef]
- Rambadey, O.V.; Kumar, A.; Sati, A.; Sagdeo, P.R. Exploring the Interrelation between Urbach Energy and Dielectric Constant in Hf-Substituted BaTiO3. ACS Omega 2021, 6, 32231–32238. [Google Scholar] [CrossRef]
- Lee, J.-H.; Im, K.-S. Growth of High Quality GaN on Si (111) Substrate by Using Two-Step Growth Method for Vertical Power Devices Application. Crystals 2021, 11, 234. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, S.; Wan, S.; Zou, B.; Feng, Y.; Mei, R.; Wu, H.; Shigekawa, N.; Liang, J.; Tan, P.; et al. Tuning the interlayer microstructure and residual stress of buffer-free direct bonding GaN/Si heterostructures. Appl. Phys. Lett. 2023, 122, 082103. [Google Scholar] [CrossRef]
- Feng, Z.C.; Wang, W.; Chua, S.J.; Zhang, P.; Williams, K.P.J.; Pitt, G.D. Raman scattering properties of GaN materials and structures under visible and ultraviolet excitations. J. Raman Spectrosc. 2001, 32, 840–846. [Google Scholar] [CrossRef]
- Saron, K.M.A.; Ibrahim, M.; Taha, T.A.; Aljameel, A.I.; Alharbi, A.G.; Alenad, A.M.; Alshammari, B.A.; Almutairi, G.N.; Allam, N.K. Growth of high-quality GaN nanowires on p-Si (111) and their performance in solid state heterojunction solar cells. Sol. Energy 2021, 227, 525–531. [Google Scholar] [CrossRef]
- Feng, S.; Zheng, Z.; Cheng, Y.; Ng, Y.H.; Song, W.; Chen, T.; Zhang, L.; Cheng, K.; Chen, K.J. Strain Release in GaN Epitaxy on 4° Off-Axis 4H-SiC. Adv. Mater. 2022, 34, 2201169. [Google Scholar] [CrossRef]
- Katsikini, M.; Pinakidou, F.; Arvanitidis, J.; Paloura, E.C.; Ves, S.; Komninou, P.; Bougrioua, Z.; Iliopoulos, E.; Moustakas, T.D. Comparison of Fe and Si doping of GaN: An EXAFS and Raman study. Mater. Sci. Eng. B 2011, 176, 723–726. [Google Scholar] [CrossRef]
- Li, L.; Zhu, S.; Cheng, L.; Qi, H.; Fan, Y.; Zheng, W. Probing carrier concentration of doped GaN single crystals from LO phonon-plasmon coupled modes. J. Lumin. 2022, 251, 119214. [Google Scholar] [CrossRef]
- d’Acapito, F.; Boscherini, F.; Mobilio, S.; Rizzi, A. Epitaxy and strain in the growth of GaN on AlN: A polarized X-ray absorption spectroscopy study. Phy. Rev. B 2002, 66, 205411. [Google Scholar] [CrossRef]
- Isomura, N.; Kikuta, D.; Takahashi, N.; Kosaka, S.; Kataoka, K. Local atomic structure analysis of GaN surfaces via X-ray absorption spectroscopy by detecting Auger electrons with low energies. J. Synchrotron Radiat. 2019, 26, 1951–1955. [Google Scholar] [CrossRef]
- Filintoglou, K.; Pinakidou, F.; Arvanitidis, J.; Christofilos, D.; Paloura, E.C.; Ves, S.; Kutza, P.; Lorenz, P.; Wendler, E.; Undisz, A.; et al. Size control of GaN nanocrystals formed by ion implantation in thermally grown silicon dioxide. J. Appl. Phys. 2020, 127, 034302. [Google Scholar] [CrossRef]
- Parida, S.; Sahoo, M.; Abharana, N.; Tromer, R.M.; Galvao, D.S.; Dhara, S. Effect of Oxygen and Aluminum Incorporation on the Local Structure of GaN Nanowires: Insight from Extended X-ray Absorption Fine Structure Analysis. J. Phys. Chem. C 2021, 125, 3225–3234. [Google Scholar] [CrossRef]
Sample No. | S1 | S2 | S3 | S4 | S5 | S6 | S7 |
---|---|---|---|---|---|---|---|
Initial run no. | NS36 | NS37 | NS38 | NS42 | NS45 | NS41 | NS48 |
Growth temp. (°C) | 650 | 700 | 700 | 700 | 650 | 650 | 750 |
Growth time (min.) | 120 | 120 | 600 | 120 | 120 | 120 | 120 |
Ga flux (×10−7 torr) | 2.1 | 2.0 | 2.1 | 1.9 | 2.5 | 2.5 | |
Thickness (nm)–from SE | 162 | 175 | 1507 | 547 | 298 | 262 | 248 |
Overview of NM | Fair | Best | Poor | Worst | Good | Worst | Good |
PL GaN peak (RT) | Weakest | Strongest | Strong | Strong | Weak | ||
Raman GaN E2 peak | Clearly | As a shoulder | Strong | Strong, narrowest | As a dim shoulder | ||
Raman GaN A1(LO) peak | As a shoulder | As a shoulder | As a shoulder |
Sample No. | S1 | S2 | S3 | S4 | S5 |
---|---|---|---|---|---|
Initial run no. | NS36 | NS37 | NS38 | NS42 | NS45 |
Peak 2θ (0002) (°) | 34.52 | 34.49 | 34.50 | 34.51 | 34.48 |
FWHM 2θ (0002) (°) | 0.254 | 0.216 | 0.205 | 0.219 | 0.356 |
β: (π/180, Rad) | 0.004433 | 0.00377 | 0.003578 | 0.003822 | 0.006213 |
β cosθ | 0.004234 | 0.00360 | 0.00342 | 0.00365 | 0.005934 |
Crystallite size D (nm) | 32.76 | 38.53 | 40.56 | 38.0 | 23.37 |
Lattice strain (×10−3) | 1.058 | 0.90 | 0.854 | 0.913 | 1.48 |
Dislocation density (×1010) (cm−2) | 9.32 | 6.74 | 6.08 | 6.93 | 18.31 |
Sample No. | S1 | S2 | S3 | S4 | S5 | S6 | S7 |
---|---|---|---|---|---|---|---|
Initial run no. | NS36 | NS37 | NS38 | NS42 | NS45 | NS41 | NS48 |
Surface roughness (nm) | 3.3 | 2.7 | 8.3 | 4.9 | 7.1 | 3.3 | 10.5 |
GaN thickness (nm) | 162 | 175 | 1507 | 547 | 298 | 262 | 248 |
AlN buffer thickness (nm) | 20.0 | 20.0 | 20.0 | 20.0 | 20.0 | 20.0 | 20.0 |
GaN band gap by SE (nm) | 362.95 | 362.80 | 362.64 | 362.64 | 362.79 | 362.80 | 363.13 |
GaN band gap by SE (eV) | 3.416 | 3.418 | 3.419 | 3.419 | 3.418 | 3.418 | 3.415 |
AlN buffer gap by SE (nm) | 197.64 | 197.32 | 197.48 | 197.63 | 197.48 | 197.32 | |
AlN buffer gap by SE (eV) | 6.274 | 6.284 | 6.279 | 6.274 | 6.279 | 6.284 | |
Eu by SE (meV) | 18.3 | 18.3 | 18.3 | 18.3 | 18.3 | 18.3 | 18.3 |
Sample No. | S2 | S3 | S6 | S7 |
---|---|---|---|---|
Initial run no. | NS37 | NS38 | NS41 | NS48 |
E2 (cm−1)-Lorentz fit | 567.9 | 565.9 | 568.5 | 559.2 |
E2 FWHM (cm−1)-Lorentz fit | 22.5 | 40.0 | 58.3 | 66.9 |
SCM fit A (cm−1) | 568.3 | 566.5 | 565 | 556.5 |
SCM fit B (cm−1) | 109.5 | 100 | 101 | 100 |
SCM fit L (Å) | 21 | 22 | 29 | 22 |
SCM fit Γ0 (cm−1) | 17 | 16 | 19 | 36 |
ωp (cm−1) from LO fit | 120 | 90 | 50 | 20 |
Carrier concentration n (×1016 cm−3) | 16.3 | 9.2 | 2.8 | 0.45 |
Angel | RGa-N (Å) | RGa-Ga in-plan (Å) | RGa-Ga out-plan (Å) |
---|---|---|---|
15° | 1.936 | 3.193 | |
45° | 1.984 | 3.176 | 3.294 |
90° | 1.920 | 3.195 |
Resonance | G1 | G2 | G3 | G4 | G5 | G6 | G7 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Incident angle | 15° | 90° | 15° | 90° | 15° | 90° | 15° | 90° | 15° | 90° | 15° | 90° | 15° | 90° |
E (ev) | 10,377.6 | 10,380.5 | 10,383.5 | 10,386.7 | 10,391.7 | 10,394.5 | 10,398.5 | |||||||
FWHM (ev) | 2.4 | 3.65 | 3.5 | 3.7 | 4.5 | 4.9 | 5 | |||||||
Area (arb. Units) | 0.7 | 0.95 | 3.1 | 1.9 | 1.85 | 4.1 | 2.23 | 1 | 1.4 | 0.9 | 2.1 | 2.35 | 0.7 | 1.5 |
Transition | 1s => pxy | 1s => pz | 1s => pxy | 1s => pz | 1s => pz | 1s => pxy | 1s => pxy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Z.C.; Liu, J.; Xie, D.; Nafisa, M.T.; Zhang, C.; Wan, L.; Jiang, B.; Lin, H.-H.; Qiu, Z.-R.; Lu, W.; et al. Optical, Structural, and Synchrotron X-ray Absorption Studies for GaN Thin Films Grown on Si by Molecular Beam Epitaxy. Materials 2024, 17, 2921. https://doi.org/10.3390/ma17122921
Feng ZC, Liu J, Xie D, Nafisa MT, Zhang C, Wan L, Jiang B, Lin H-H, Qiu Z-R, Lu W, et al. Optical, Structural, and Synchrotron X-ray Absorption Studies for GaN Thin Films Grown on Si by Molecular Beam Epitaxy. Materials. 2024; 17(12):2921. https://doi.org/10.3390/ma17122921
Chicago/Turabian StyleFeng, Zhe Chuan, Jiamin Liu, Deng Xie, Manika Tun Nafisa, Chuanwei Zhang, Lingyu Wan, Beibei Jiang, Hao-Hsiung Lin, Zhi-Ren Qiu, Weijie Lu, and et al. 2024. "Optical, Structural, and Synchrotron X-ray Absorption Studies for GaN Thin Films Grown on Si by Molecular Beam Epitaxy" Materials 17, no. 12: 2921. https://doi.org/10.3390/ma17122921
APA StyleFeng, Z. C., Liu, J., Xie, D., Nafisa, M. T., Zhang, C., Wan, L., Jiang, B., Lin, H. -H., Qiu, Z. -R., Lu, W., Klein, B., Ferguson, I. T., & Liu, S. (2024). Optical, Structural, and Synchrotron X-ray Absorption Studies for GaN Thin Films Grown on Si by Molecular Beam Epitaxy. Materials, 17(12), 2921. https://doi.org/10.3390/ma17122921