Effects of Cu/SnAgCu Powder Fraction and Sintering Time on Microstructure and Mechanical Properties of Transient Liquid Phase Sintered Joints
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bultitude, J.; McConnell, J.; Shearer, C. High temperature capacitors and transient liquid phase interconnects for Pb-solder replacement. J. Mater. Sci. Mater. Electron. 2015, 26, 9236–9242. [Google Scholar] [CrossRef]
- Fujino, M.; Narusawa, H.; Kuramochi, Y.; Higurashi, E.; Suga, T.; Shiratori, T.; Mizukoshi, M. Transient liquid-phase sintering using silver and tin powder mixture for die bonding. Jpn. J. Appl. Phys. 2016, 55, 04EC14. [Google Scholar] [CrossRef]
- Guo, Q.; Sun, S.; Zhang, Z.; Chen, H.; Li, M. Microstructure evolution and mechanical strength evaluation in Ag/Sn/Cu TLP bonding interconnection during aging test. Microelectron. Reliab. 2018, 80, 144–148. [Google Scholar] [CrossRef]
- German, R.M.; Suri, P.; Park, S.J. Liquid phase sintering. J. Mater. Sci. 2009, 44, 1–39. [Google Scholar] [CrossRef]
- Xie, G.; Li, S.; Louzguine-Luzgin, D.V.; Cao, Z.; Yoshikawa, N.; Sato, M.; Inoue, A. Effect of Sn on microwave-induced heating and sintering of Ni-based metallic glassy alloy powders. Intermetallics 2009, 17, 274–277. [Google Scholar] [CrossRef]
- Lis, A.; Leinenbach, C. Effect of process and service conditions on TLP-bonded components with (Ag, Ni–) Sn interlayer combinations. J. Electron. Mater. 2015, 44, 4576–4588. [Google Scholar] [CrossRef]
- Shao, H.; Wu, A.; Bao, Y.; Zhao, Y. Elimination of pores in Ag–Sn TLP bonds by the introduction of dissimilar intermetallic phases. J. Mater. Sci. 2017, 52, 3508–3519. [Google Scholar] [CrossRef]
- Lee, J.-B.; Hwang, H.-Y.; Rhee, M.-W. Reliability investigation of Cu/In TLP bonding. J. Electron. Mater. 2015, 44, 435–441. [Google Scholar] [CrossRef]
- Shao, H.; Wu, A.; Bao, Y.; Zhao, Y.; Zou, G.; Liu, L. Thermal reliability investigation of Ag-Sn TLP bonds for high-temperature power electronics application. Microelectron. Reliab. 2018, 91, 38–45. [Google Scholar] [CrossRef]
- Kim, M.I.; Lee, J.-H. Die sinter bonding in air using Cu@Ag particulate preform and rapid formation of near-full density bondline. J. Mater. Res. Technol. 2021, 14, 1724–1738. [Google Scholar] [CrossRef]
- Sharif, A.; Gan, C.L.; Chen, Z. Transient liquid phase Ag-based solder technology for high-temperature packaging applications. J. Alloys Compd. 2014, 587, 365–368. [Google Scholar] [CrossRef]
- Shao, H.; Wu, A.; Bao, Y.; Zhao, Y.; Zou, G.; Liu, L. Microstructure evolution and mechanical properties of Cu/Sn/Ag TLP-bonded joint during thermal aging. Mater. Charact. 2018, 144, 469–478. [Google Scholar] [CrossRef]
- Hsiao, C.-H.; Kung, W.-T.; Song, J.-M.; Chang, J.-Y.; Chang, T.-C. Development of Cu-Ag pastes for high temperature sustainable bonding. Mater. Sci. Eng. A 2017, 684, 500–509. [Google Scholar] [CrossRef]
- Sun, L.; Chen, M.-H.; Zhang, L. Microstructure evolution and grain orientation of IMC in Cu-Sn TLP bonding solder joints. J. Alloys Compd. 2019, 786, 677–687. [Google Scholar] [CrossRef]
- Peng, X.; Wang, Y.; Wang, W.; Ye, Z.; Yang, J.; Huang, J. Kinetics of Cu6Sn5 and Cu3Sn intermetallic compounds growth and isothermal solidification during Cu-Sn transient liquid phase sintering process. J. Alloys Compd. 2023, 949, 169631. [Google Scholar] [CrossRef]
- Mohd Said, R.; Mohd Salleh, M.; Saud, N.; Ramli, M.; Yasuda, H.; Nogita, K. Microstructure and growth kinetic study in Sn–Cu transient liquid phase sintering solder paste. J. Mater. Sci. Mater. Electron. 2020, 31, 11077–11094. [Google Scholar] [CrossRef]
- Mo, L.; Chen, Z.; Wu, F.; Liu, C. Microstructural and mechanical analysis on Cu–Sn intermetallic micro-joints under isothermal condition. Intermetallics 2015, 66, 13–21. [Google Scholar] [CrossRef]
- Wang, S.; Ji, H.; Li, M.; Wang, C. Fabrication of interconnects using pressureless low temperature sintered Ag nanoparticles. Mater. Lett. 2012, 85, 61–63. [Google Scholar] [CrossRef]
- Paknejad, S.A.; Mansourian, A.; Greenberg, J.; Khtatba, K.; Van Parijs, L.; Mannan, S.H. Microstructural evolution of sintered silver at elevated temperatures. Microelectron. Reliab. 2016, 63, 125–133. [Google Scholar] [CrossRef]
- Yang, F.; Zhu, W.; Wu, W.; Ji, H.; Hang, C.; Li, M. Microstructural evolution and degradation mechanism of SiC–Cu chip attachment using sintered nano-Ag paste during high-temperature ageing. J. Alloys Compd. 2020, 846, 156442. [Google Scholar] [CrossRef]
- Yu, F.; Cui, J.; Zhou, Z.; Fang, K.; Johnson, R.W.; Hamilton, M.C. Reliability of Ag sintering for power semiconductor die attach in high-temperature applications. IEEE Trans. Power Electron. 2016, 32, 7083–7095. [Google Scholar] [CrossRef]
- Li, J.; Johnson, C.M.; Buttay, C.; Sabbah, W.; Azzopardi, S. Bonding strength of multiple SiC die attachment prepared by sintering of Ag nanoparticles. J. Mater. Process. Technol. 2015, 215, 299–308. [Google Scholar] [CrossRef]
- Li, S.; Wang, X.; Liu, Z.; Mao, F.; Jiu, Y.; Luo, J.; Shangguan, L.; Jin, X.; Wu, G.; Zhang, S. Research status of evolution of microstructure and properties of Sn-based lead-free composite solder alloys. J. Nanomater. 2020, 2020, 8843166. [Google Scholar] [CrossRef]
- Ramli, M.; Saud, N.; Salleh, M.M.; Derman, M.N.; Said, R.M. Effect of TiO2 additions on Sn-0.7 Cu-0.05 Ni lead-free composite solder. Microelectron. Reliab. 2016, 65, 255–264. [Google Scholar] [CrossRef]
- Zhang, H.; Minter, J.; Lee, N.-C. A brief review on high-temperature, Pb-free die-attach materials. J. Electron. Mater. 2019, 48, 201–210. [Google Scholar] [CrossRef]
- Bhogaraju, S.K.; Conti, F.; Kotadia, H.R.; Keim, S.; Tetzlaff, U.; Elger, G. Novel approach to copper sintering using surface enhanced brass micro flakes for microelectronics packaging. J. Alloys Compd. 2020, 844, 156043. [Google Scholar] [CrossRef]
- Liu, X.; Nishikawa, H. Low-pressure Cu-Cu bonding using in-situ surface-modified microscale Cu particles for power device packaging. Scr. Mater. 2016, 120, 80–84. [Google Scholar] [CrossRef]
- Nguyen, Y.N.; Kim, S.; Bae, S.H.; Son, I. Enhancement of bonding strength in BiTe-based thermoelectric modules by electroless nickel, electroless palladium, and immersion gold surface modification. Appl. Surf. Sci. 2021, 545, 149005. [Google Scholar] [CrossRef]
- Yan, H.; Liang, P.; Mei, Y.; Feng, Z. Brief review of silver sinter-bonding processing for packaging high-temperature power devices. Chin. J. Electr. Eng. 2020, 6, 25–34. [Google Scholar] [CrossRef]
- Tang, W.; Long, X.; Liu, Y.; Du, C.; Yao, Y.; Zhou, C.; Wu, Y.; Jia, F. Effect of electric current on constitutive behaviour and microstructure of SAC305 solder joint. In Proceedings of the 2018 IEEE 20th Electronics Packaging Technology Conference (EPTC), Singapore, 4–7 December 2018; pp. 717–721. [Google Scholar]
- Joo, H.-S.; Lee, C.-J.; Min, K.D.; Hwang, B.-U.; Jung, S.-B. Mechanical properties and microstructural evolution of solder alloys fabricated using laser-assisted bonding. J. Mater. Sci. Mater. Electron. 2020, 31, 22926–22932. [Google Scholar] [CrossRef]
- Kousar, S.; Hansen, K.; Keller, T.F. Laser-Assisted Micro-Solder Bumping for Copper and Nickel–Gold Pad Finish. Materials 2022, 15, 7349. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.D.; Wang, C.; Swingler, J. Laser-Assisted Sintering of Silver Nanoparticle Paste for Bonding of Silicon to DBC for High-Temperature Electronics Packaging. IEEE Trans. Compon. Packag. Manuf. Technol. 2020, 11, 522–529. [Google Scholar] [CrossRef]
- Jung, K.-H.; Min, K.D.; Lee, C.-J.; Jeong, H.; Kim, J.-H.; Jung, S.-B. Ultrafast photonic soldering with Sn–58Bi using intense pulsed light energy. Adv. Eng. Mater. 2020, 22, 2000179. [Google Scholar] [CrossRef]
- Li, Y.; Wong, C. Recent advances of conductive adhesives as a lead-free alternative in electronic packaging: Materials, processing, reliability and applications. Mater. Sci. Eng. R: Rep. 2006, 51, 1–35. [Google Scholar] [CrossRef]
- Tu, K.-N.; Gusak, A.M.; Li, M. Physics and materials challenges for lead-free solders. J. Appl. Phys. 2003, 93, 1335–1353. [Google Scholar] [CrossRef]
- Tu, K.-N.; Thompson, R. Kinetics of interfacial reaction in bimetallic CuSn thin films. Acta Metall. 1982, 30, 947–952. [Google Scholar] [CrossRef]
- Tu, K.-N. Cu/Sn interfacial reactions: Thin-film case versus bulk case. Mater. Chem. Phys. 1996, 46, 217–223. [Google Scholar] [CrossRef]
- Ha, H.-B.; Lee, B.H.; Qaiser, N.; Seo, Y.; Kim, J.; Koo, J.M.; Hwang, B. Highly reliable anisotropic interconnection system fabricated using Cu/Sn-Soldered microdumbbell arrays and polyimide films for application to flexible electronics. Intermetallics 2022, 144, 107535. [Google Scholar] [CrossRef]
- Chen, W.-Y.; Yu, C.-Y.; Duh, J.-G. Improving the shear strength of Sn–Ag–Cu–Ni/Cu–Zn solder joints via modifying the microstructure and phase stability of Cu–Sn intermetallic compounds. Intermetallics 2014, 54, 181–186. [Google Scholar] [CrossRef]
- Wang, C.-H.; Shen, H.-T. Effects of Ni addition on the interfacial reactions between Sn–Cu solders and Ni substrate. Intermetallics 2010, 18, 616–622. [Google Scholar] [CrossRef]
- Ding, C.; Wang, J.; Liu, T.; Qin, H.; Yang, D.; Zhang, G. The Mechanical Properties and Elastic Anisotropy of η′-Cu6Sn5 and Cu3Sn Intermetallic Compounds. Crystals 2021, 11, 1562. [Google Scholar] [CrossRef]
- Shang, M.; Dong, C.; Yao, J.; Wang, C.; Ma, H.; Ma, H.; Wang, Y. Competitive growth of Cu3Sn and Cu6Sn5 at Sn/Cu interface during various multi-reflow processes. J. Mater. Sci. Mater. Electron. 2021, 32, 22771–22779. [Google Scholar] [CrossRef]
- Lee, B.-S.; Hyun, S.-K.; Yoon, J.-W. Cu–Sn and Ni–Sn transient liquid phase bonding for die-attach technology applications in high-temperature power electronics packaging. J. Mater. Sci. Mater. Electron. 2017, 28, 7827–7833. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, C.; Yang, Y.; Zhang, H.; Kim, D.; Sugahara, T.; Nagao, S.; Suganuma, K. Low-temperature and pressureless sinter joining of Cu with micron/submicron Ag particle paste in air. J. Alloys Compd. 2019, 780, 435–442. [Google Scholar] [CrossRef]
- Jiu, J.; Zhang, H.; Koga, S.; Nagao, S.; Izumi, Y.; Suganuma, K. Simultaneous synthesis of nano and micro-Ag particles and their application as a die-attachment material. J. Mater. Sci. Mater. Electron. 2015, 26, 7183–7191. [Google Scholar] [CrossRef]
- Jiu, J.; Zhang, H.; Nagao, S.; Sugahara, T.; Kagami, N.; Suzuki, Y.; Akai, Y.; Suganuma, K. Die-attaching silver paste based on a novel solvent for high-power semiconductor devices. J. Mater. Sci. 2016, 51, 3422–3430. [Google Scholar] [CrossRef]
- Chen, C.; Gao, Y.; Liu, Z.-Q.; Suganuma, K. 3D pyramid-shape Ag plating assisted interface connection growth of sinter micron-sized Ag paste. Scr. Mater. 2020, 179, 36–39. [Google Scholar] [CrossRef]
- Chuang, T.-H.; Chen, Y.-T.; Lai, Y.-C.; Yang, Z.-H. Effects of Sputtering Bias on the Material Characteristics of Ag Nanotwinned Films. IEEE Trans. Compon. Packag. Manuf. Technol. 2023, 13, 750–756. [Google Scholar] [CrossRef]
- Chuang, T.-H.; Chen, Y.-H.; Wu, P.-C. Mechanism of the Evaporation of Ag Nano-Twinned Films on Si Wafers with Assistance of Ion Beam Bombardment. Int. J. Miner. Metall. Mater. 2022, 8, 08–15. [Google Scholar] [CrossRef]
- Chuang, T.-H.; Wu, P.-C.; Lin, Y.-C. Lattice buffer effect of Ti film on the epitaxial growth of Ag nanotwins on Si substrates with various orientations. Mater. Charact. 2020, 167, 110509. [Google Scholar] [CrossRef]
- Lai, Y.-C.; Wu, P.-C.; Chuang, T.-H. Characterization of interfacial structure for low-temperature direct bonding of Si substrates sputtered with Ag nanotwinned films. Mater. Charact. 2021, 175, 111060. [Google Scholar] [CrossRef]
- Abdelhadi, O.M.; Ladani, L. IMC growth of Sn-3.5 Ag/Cu system: Combined chemical reaction and diffusion mechanisms. J. Alloys Compd. 2012, 537, 87–99. [Google Scholar] [CrossRef]
- Suh, J.; Tu, K.-N.; Lutsenko, G.; Gusak, A. Size distribution and morphology of Cu6Sn5 scallops in wetting reaction between molten solder and copper. Acta Mater. 2008, 56, 1075–1083. [Google Scholar] [CrossRef]
- Hsiao, H.-Y.; Liu, C.-M.; Lin, H.-W.; Liu, T.-C.; Lu, C.-L.; Huang, Y.-S.; Chen, C.; Tu, K.N. Unidirectional growth of microbumps on (111)-oriented and nanotwinned copper. Science 2012, 336, 1007–1010. [Google Scholar] [CrossRef]
- Chiu, W.-L.; Liu, C.-M.; Haung, Y.-S.; Chen, C. Formation of nearly void-free Cu3Sn intermetallic joints using nanotwinned Cu metallization. Appl. Phys. Lett. 2014, 104, 171902. [Google Scholar] [CrossRef]
- Lin, J.-A.; Lin, C.-K.; Liu, C.-M.; Huang, Y.-S.; Chen, C.; Chu, D.T.; Tu, K.-N. Formation mechanism of porous Cu3Sn intermetallic compounds by high current stressing at high temperatures in low-bump-height solder joints. Crystals 2016, 6, 12. [Google Scholar] [CrossRef]
- Liu, L.; Chen, Z.; Liu, C.; Wu, Y.; An, B. Micro-mechanical and fracture characteristics of Cu6Sn5 and Cu3Sn intermetallic compounds under micro-cantilever bending. Intermetallics 2016, 76, 10–17. [Google Scholar] [CrossRef]
- Yin, Z.; Sun, F.; Guo, M. Investigation of Elevated Temperature Mechanical Properties of Intermetallic Compounds in the Cu–Sn System Using Nanoindentation. J. Electron. Packag. 2020, 142, 021004. [Google Scholar] [CrossRef]
- Yoon, J.-W.; Back, J.-H. Effect of sintering conditions on the mechanical strength of Cu-sintered joints for high-power applications. Materials 2018, 11, 2105. [Google Scholar] [CrossRef]
- Yang, H.; Zhu, W. Study on the main influencing factors of shear strength of nano-silver joints. J. Mater. Res. Technol. 2020, 9, 4133–4138. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, C.; Suetake, A.; Hsieh, M.-C.; Iwaki, A.; Suganuma, K. Pressureless and low-temperature sinter-joining on bare Si, SiC and GaN by a Ag flake paste. Scr. Mater. 2021, 198, 113833. [Google Scholar] [CrossRef]
- Tan, Y.; Li, X.; Chen, G.; Gao, Q.; Lu, G.-Q.; Chen, X. Effects of thermal aging on long-term reliability and failure modes of nano-silver sintered lap-shear joint. Int. J. Adhes. Adhes. 2020, 97, 102488. [Google Scholar] [CrossRef]
- Wang, W.; Zou, G.; Jia, Q.; Zhang, H.; Feng, B.; Deng, Z.; Liu, L. Mechanical properties and microstructure of low temperature sintered joints using organic-free silver nanostructured film for die attachment of SiC power electronics. Mater. Sci. Eng. A 2020, 793, 139894. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Z.; Wang, B.; Chen, W.; Zhang, G.; Zhang, J.; Fan, J.; Liu, P. Effect of epoxy resin addition on properties and corrosion behavior of sintered joints in power modules serviced offshore. J. Mater. Res. Technol. 2023, 25, 6593–6612. [Google Scholar] [CrossRef]
- Son, J.; Yu, D.-Y.; Kim, Y.-C.; Kim, S.-I.; Byun, D.; Bang, J. Thermal reliability of Cu sintering joints for high-temperature die attach. Microelectron. Reliab. 2023, 147, 115002. [Google Scholar] [CrossRef]
- Dai, D.; Li, J.; Qian, J.; Wang, Z.; Zheng, K.; Yu, J.; Chen, X. The formation of Cu-Cu joints by low temperature sintering Cu NPs with copper formate layer and its oxidation enhancement. Mater. Lett. 2023, 339, 134087. [Google Scholar] [CrossRef]
- Wang, C.; Li, G.; Xu, L.; Li, J.; Zhang, D.; Zhao, T.; Sun, R.; Zhu, P. Low temperature sintered silver nanoflake paste for power device packaging and its anisotropic sintering mechanism. ACS Appl. Electron. Mater. 2021, 3, 5365–5373. [Google Scholar] [CrossRef]
- Yang, M.; Zhao, X.; Huo, Y.; Tu, K.-N.; Liu, Y. Comparison between bulk and particle solder alloy on the performance of low-melting solder joints. J. Mater. Res. Technol. 2023, 24, 71–80. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, D.-P.; Liu, Y.-T.; Chen, C. Effects of Cu/SnAgCu Powder Fraction and Sintering Time on Microstructure and Mechanical Properties of Transient Liquid Phase Sintered Joints. Materials 2024, 17, 2004. https://doi.org/10.3390/ma17092004
Tran D-P, Liu Y-T, Chen C. Effects of Cu/SnAgCu Powder Fraction and Sintering Time on Microstructure and Mechanical Properties of Transient Liquid Phase Sintered Joints. Materials. 2024; 17(9):2004. https://doi.org/10.3390/ma17092004
Chicago/Turabian StyleTran, Dinh-Phuc, Yu-Ting Liu, and Chih Chen. 2024. "Effects of Cu/SnAgCu Powder Fraction and Sintering Time on Microstructure and Mechanical Properties of Transient Liquid Phase Sintered Joints" Materials 17, no. 9: 2004. https://doi.org/10.3390/ma17092004
APA StyleTran, D. -P., Liu, Y. -T., & Chen, C. (2024). Effects of Cu/SnAgCu Powder Fraction and Sintering Time on Microstructure and Mechanical Properties of Transient Liquid Phase Sintered Joints. Materials, 17(9), 2004. https://doi.org/10.3390/ma17092004