The Contribution of Scanning Force Microscopy on Dental Research: A Narrative Review
Abstract
:1. Introduction
2. Instruments, Operation Modes and Methods
2.1. SFM Principle
2.2. SFM Operating and Imaging Modes
2.3. Force–Distance Measurements
3. Material Aspects of Dental Materials
4. Adhesion Forces (Scanning Force Spectroscopy) on Dental Materials
4.1. Attachment of Molecules and Cells to the SFM Tip
4.2. Adhesion of Biomolecules and Cells to Dentally Relevant Materials
5. Lateral Force Microscopy
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Rajkumar, K.; Selvakumar, K.; Mahalaxmi, S. A proposed broad classification of the materials used in restorative dentistry. J. Conserv. Dent. 2022, 25, 678–679. [Google Scholar] [PubMed]
- Manappallil, J.J. Basic Dental Materials, 4th ed.; Jaypee Brothers Medical Publishers: New Delhi, India, 2015. [Google Scholar]
- Powers, J.M.; Wataha, J.C.; Chen, Y.W. Dental Materials: Foundations and Applications, 11th ed.; Elsevier: Maryland Heights, MO, USA, 2017. [Google Scholar]
- Ionescu, R.N.; Totan, A.R.; Imre, M.M.; Țâncu, A.M.C.; Pantea, M.; Butucescu, M.; Farcașiu, A.T. Prosthetic Materials Used for Implant-Supported Restorations and Their Biochemical Oral Interactions: A Narrative Review. Materials 2022, 15, 1016. [Google Scholar] [CrossRef] [PubMed]
- Vahabi, S.; Nazemi Salman, B.; Javanmard, A. Atomic force microscopy application in biological research: A review study. Iran. J. Med. Sci. 2013, 38, 76–83. [Google Scholar] [PubMed]
- Jandt, K.D. Atomic force microscopy of biomaterials surfaces and interfaces. Surf. Sci. 2001, 491, 303–332. [Google Scholar] [CrossRef]
- Handschuh-Wang, S.; Wang, T.; Zhou, X. Recent advances in hybrid measurement methods based on atomic force microscopy and surface-sensitive measurement techniques. RSC Adv. 2017, 7, 47464–47499. [Google Scholar] [CrossRef]
- Geisse, N.A. AFM and combined optical techniques. Materialstoday 2009, 12, 40–45. [Google Scholar] [CrossRef]
- Zhou, L.; Cai, M.; Tong, T.; Wang, H. Progress in the Correlative Atomic Force Microscopy and Optical Microscopy. Sensors 2017, 17, 938. [Google Scholar] [CrossRef] [PubMed]
- Flores, S.M.; Toca-Herrera, J.L. The new future of scanning probe microscopy: Combining atomic force microscopy with other surface-sensitive techniques, optical microscopy and fluorescence techniques. Nanoscale 2009, 1, 40–49. [Google Scholar] [CrossRef]
- Binnig, G.; Quate, C.F.; Gerber, C. Atomic Force Microscope. Phys. Rev. Lett. 1986, 56, 930–933. [Google Scholar] [CrossRef] [PubMed]
- Radmacher, M.; Fritz, M.; Cleveland, J.P.; Walters, D.A.; Hansma, P.K. Imaging adhesion forces and elasticity of lysozyme adsorbed on mica with the atomic force microscope. Langmuir 1994, 10, 3809–3814. [Google Scholar] [CrossRef]
- Baselt, D.R.; Baldeschwieler, J.D. Imaging spectroscopy with the atomic force microscope. J. Appl. Phys. 1994, 76, 33–38. [Google Scholar] [CrossRef]
- Martin, Y.; Williams, C.C.; Wickramasinghe, H.K. Atomic force microscope-force mapping and profiling on a sub 100-Å scale. J. Appl. Phys. 1987, 61, 4723–4729. [Google Scholar] [CrossRef]
- Smolyakov, G.; Formosa-Dague, C.; Severac, C.; Duval, R.R.; Dague, E. High speed indentation measures by FV, QI and QNM introduce a new understanding of bionanomechanical experiments. Micron 2016, 85, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Chopinet, L.; Formosa, C.; Rols, M.P.; Duval, R.E.; Dague, E. Imaging living cells surface and quantifying its properties at high resolution using AFM in QI™ mode. Micron 2013, 48, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Dokukin, M.E.; Sokolov, I. Quantitative Mapping of the Elastic Modulus of Soft Materials with HarmoniX and PeakForce QNM AFM Modes. Langmuir 2012, 28, 16060–16071. [Google Scholar] [CrossRef] [PubMed]
- Schaad, P.; Paris, E.; Cuisinier, F.J.G.; Voegel, J.C. Atomic force microscopy study of human tooth enamel surfaces. Scanning Microsc. 1993, 7, 1149–1152. [Google Scholar]
- Robinson, C.; Connell, S.; Kirkham, J.; Shore, R.; Smith, A. Dental enamel—A biological ceramic: Regular substructures in enamel hydroxyapatite crystals revealed by atomic force microscopy. J. Mater. Chem. 2004, 14, 2242–2248. [Google Scholar] [CrossRef]
- Müller, C.; Lüders, A.; Hoth-Hannig, W.; Hannig, M.; Ziegler, C. Initial Bioadhesion on Dental Materials as a Function of Contact Time, pH, Surface Wettability, and Isoelectric Point. Langmuir 2010, 26, 4136–4141. [Google Scholar] [CrossRef]
- Farina, M.; Schemmel, A.; Weissmüller, G.; Cruz, R.; Kachar, B.; Bisch, P.M. Atomic Force Microscopy Study of Tooth Surfaces. J. Struct. Biol. 1999, 125, 39–49. [Google Scholar] [CrossRef]
- Müller, C.; Wald, J.; Hoth-Hannig, W.; Umanskaya, N.; Scholz, D.; Hannig, M.; Ziegler, C. Protein adhesion on dental surfaces—A combined surface analytical approach. Anal. Bioanal. Chem. 2011, 400, 679–689. [Google Scholar] [CrossRef]
- Li, P.; Oh, C.; Kim, H.; Chen-Glasser, M.; Park, G.; Jetybayeva, A.; Yeom, J.; Kim, H.; Ryu, J.; Hong, S. Nanoscale effects of beverages on enamel surface of human teeth: An atomic force microscopy study. J. Mech. Behav. Biomed. Mater. 2020, 110, 103930. [Google Scholar] [CrossRef] [PubMed]
- Finke, M.; Jandt, K.D.; Parker, D.M. The Early Stages of Native Enamel Dissolution Studied with Atomic Force Microscopy. J. Colloid Interface Sci. 2000, 232, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Watari, F. In situ quantitative analysis of etching process of human teeth by atomic force microscopy. J. Electron. Microsc. 2005, 54, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Segota, S. Application of atomic force microscopy in investigations of dental alloy surfaces. Serb. Dent. J. 2023, 70, 33–38. [Google Scholar] [CrossRef]
- Zavala-Alonso, V.; Martínez-Castanon, G.A.; Patiño-Marín, N.; Terrones, H.; Anusavice, K.; Loyola-Rodríguez, J.P. Characterization of Healthy and Fluorotic Enamel by Atomic Force Microscopy. Microsc. Microanal. 2010, 16, 531–536. [Google Scholar] [CrossRef]
- Zeitz, C.; Faidt, T.; Grandthyll, S.; Hähl, H.; Thewes, N.; Spengler, C.; Schmauch, J.; Deckarm, M.J.; Gachot, C.; Natter, H.; et al. Synthesis of hydroxyapatite substrates: Bridging the gap between model surfaces and enamel. Appl. Mater. Interfaces 2016, 8, 25848. [Google Scholar] [CrossRef] [PubMed]
- Faidt, T.; Zeitz, C.; Grandthyll, S.; Hans, M.; Hannig, M.; Jacobs, K.; Müller, F. Time Dependence of Fluoride Uptake in Hydroxyapatite. Biomater. Sci. Eng. 2017, 3, 1822–1826. [Google Scholar] [CrossRef]
- Faidt, T.; Friedrichs, A.; Grandthyll, S.; Spengler, C.; Jacobs, K.; Müller, F. Effect of Fluoride Treatment on the Acid Resistance of Hydroxyapatite. Langmuir 2018, 34, 15253–15258. [Google Scholar] [CrossRef]
- Hannig, M.; Herzog, S.; Willigeroth, S.F.; Zimehl, R. Atomic force microscopy study of salivary pellicles formed on enamel and glass in vivo. Colloid Polym. Sci. 2001, 279, 479–483. [Google Scholar] [CrossRef]
- Hannig, M.; Döbert, A.; Stigler, R.; Müller, U.; Prokhorova, S.A. Initial salivary pellicle formation on solid substrates studied by AFM. J. Nanosci. Nanotechnol. 2004, 4, 532–538. [Google Scholar] [CrossRef]
- Al-Ahmad, A.; Wiedmann-Al-Ahmad, M.; Faust, J.; Bächle, M.; Follo, M.; Wolkewitz, M.; Hannig, C.; Hellwig, E.; Carvalho, C.; Kohal, R. Biofilm formation and composition on different implant materials in vivo. J. Biomed. Mater. Res. 2010, 95B, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Cross, S.E.; Hsueh, C.; Wali, R.P.; Stieg, A.Z.; Gimzewski, J.K. Nanocharacterization in Dentistry. Int. J. Mol. Sci. 2010, 11, 2523–2545. [Google Scholar] [CrossRef] [PubMed]
- Giacomelli, L.; Derchi, G.; Frustaci, A.; Orlando, B.; Covani, U.; Barone, A.; De Santis, D.; Chiappelli, F. Surface roughness of commercial composites after different polishing protocols: An analysis with atomic force microscopy. Open Dent. J. 2010, 15, 191–194. [Google Scholar] [CrossRef] [PubMed]
- Jurado, C.A.; Arndt, K.; Azpiazu-Flores, F.X.; Faddoul, F.; França, R.; Fischer, N.G.; Watanabe, H. Evaluation of Glazing and Polishing Systems for Novel Chairside CAD/CAM Lithium Disilicate and Virgilite Crowns. Oper. Dent. 2023, 48, 689–699. [Google Scholar] [CrossRef] [PubMed]
- Machoy, M.; Wilczyński, S.; Szyszka-Sommerfeld, L.; Woźniak, K.; Deda, A.; Kulesza, S. Mapping of Nanomechanical Properties of Enamel Surfaces Due to Orthodontic Treatment by AFM. Methods Appl. Sci. 2021, 11, 3918. [Google Scholar] [CrossRef]
- Alharbi, N.; Terrakanok, S.; Satterthwaite, J.D.; Giordano, R.; Silikas, N. Quantitative nano-mechanical mapping AFM-based method for elastic modulus and surface roughness measurements of model polymer infiltrated ceramics. Dent. Mater. 2022, 38, 935–945. [Google Scholar] [CrossRef]
- Habelitz, S.; Marshall, S.J.; Marshall, G.W.; Baloch, M. Mechanical properties of human dental enamel on the nanometre scale. Arch. Oral Biol. 2001, 46, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Jeng, Y.R.; Lin, T.T.; Hsu, H.M.; Chang, H.J.; Shieh, D.B. Human enamel rod presents anisotropic nanotribological properties. J. Mech. Behav. Biomed. Mater. 2011, 4, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, F.C. Easy ultrastructural insight into the internal morphology of biological specimens by Atomic Force Microscopy. Sci. Rep. 2021, 11, 10214. [Google Scholar] [CrossRef]
- Hannig, C.; Hannig, M. The oral cavity—A key system to understand substratum-dependent bioadhesion on solid surfaces in man. Clin. Oral Investig. 2009, 13, 123–139. [Google Scholar] [CrossRef]
- Cheng, Y.; Feng, G.; Moraru, C.I. Micro- and nanotopography sensitive bacterial attachment mechanisms: A review. Front. Microbiol. 2019, 10, 191. [Google Scholar] [CrossRef] [PubMed]
- Rabe, M.; Verdes, D.; Seeger, S. Understanding protein adsorption phenomena at solid surfaces. Adv. Colloid Interface Sci. 2011, 162, 87–106. [Google Scholar] [CrossRef] [PubMed]
- Sterzenbach, T.; Helbig, R.; Hannig, C.; Hannig, M. Bioadhesion in the oral cavity and approaches for biofilm management by surface modifications. Clin. Oral Investig. 2020, 24, 4237–4260. [Google Scholar] [PubMed]
- Falde, E.J.; Yohe, S.T.; Colson, Y.L.; Grinstaff, M.W. Superhydrophobic materials for biomedical applications. Biomaterials 2016, 104, 87–103. [Google Scholar] [CrossRef] [PubMed]
- Domke, J.; Dannöhl, S.; Parak, W.J.; Müller, O.; Aicher, W.K.; Radmacher, M. Substrate dependent differences in morphology and elasticity of living osteoblasts investigated by atomic force microscopy. Colloids Surf. B Biointerfaces 2000, 19, 367–379. [Google Scholar] [CrossRef] [PubMed]
- Cross, S.E.; Kreth, J.; Zhu, L.; Qi, F.; Pelling, A.E.; Shi, W.; Gimzewski, J.K. Atomic force microscopy study of the structure-function relationships of the biofilm-forming bacterium Streptococcus mutans. Nanotechnology 2006, 17, S1–S7. [Google Scholar] [CrossRef] [PubMed]
- Spengler, C.; Thewes, N.; Nolle, F.; Faidt, T.; Umanskaya, N.; Hannig, M.; Bischoff, M.; Jacobs, K. Enhanced adhesion of Streptococcus mutans to hydroxyapatite after exposure to saliva. J. Mol. Recognit. 2017, 30, e2615. [Google Scholar] [CrossRef] [PubMed]
- Mischo, J.; Faidt, T.; McMillan, R.B.; Dudek, J.; Gunaratnam, G.; Bayenat, P.; Holtsch, A.; Spengler, C.; Müller, F.; Hähl, H.; et al. Hydroxyapatite Pellets as Versatile Model Surfaces for Systematic Adhesion Studies on Enamel: A Force Spectroscopy Case Study. ACS Biomater. Sci. Eng. 2022, 8, 1476–1485. [Google Scholar] [CrossRef]
- Wang, C.; van der Mei, H.C.; Busscher, H.J.; Ren, Y. Streptococcus mutans adhesion force sensing in multi-species oral biofilms. Biofilms Microbiomes 2020, 6, 25. [Google Scholar] [CrossRef]
- Doll-Nikutta, K.; Winkel, A.; Yang, I.; Grote, A.J.; Meier, N.; Habib, M.; Menzel, H.; Behrens, P.; Stiesch, M. Adhesion Forces of Oral Bacteria to Titanium and the Correlation with Biophysical Cellular Characteristics. Bioengineering 2022, 9, 567. [Google Scholar] [CrossRef]
- Wright, C.J.; Kierann Shah, M.; Powell, L.C.; Armstrong, I. Application of AFM from microbial cell to biofilm. Scanning 2010, 32, 134–149. [Google Scholar] [CrossRef]
- Dufrêne, Y.F.; Viljoen, A.; Mignolet, J.; Mathelié-Guinlet, M. AFM in cellular and molecular microbiology. Cell. Microbiol. 2021, 23, e13324. [Google Scholar] [CrossRef] [PubMed]
- Alam, F.; Kumar, S.; Varadarajan, K.M. Quantification of Adhesion Force of Bacteria on the Surface of Biomaterials: Techniques and Assays. ACS Biomater. Sci. Eng. 2019, 5, 2093–2110. [Google Scholar] [CrossRef] [PubMed]
- Hinterdorfer, P.; Dûfrene, Y. Detection and localization of single molecular recognition events using atomic force microscopy. Nat. Methods 2006, 3, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Ebner, A.; Wildling, L.; Kamruzzahan, A.S.M.; Rankl, C.; Wruss, J.; Hahn, C.D.; Hölzl, M.; Zhu, R.; Kienberger, F.; Blaas, D.; et al. Linking of Sensor Molecules with Amino Groups to Amino-Functionalized AFM Tips. Bioconjug. Chem. 2007, 18, 1176–1184. [Google Scholar] [CrossRef] [PubMed]
- Viljoen, A.; Mathelié-Guinlet, M.; Ray, A.; Strohmeyer, N.; Oh, Y.J.; Hinterdorfer, P.; Müller, D.J.; Alsteens, D.; Dufrêne, Y.F. Force spectroscopy of single cells using atomic force microscopy. Nat. Rev. Methods Prim. 2021, 1, 63. [Google Scholar] [CrossRef]
- Ehnert, S.; Müller-Renno, C.; Hannig, M.; Ziegler, C. Tip Modification for Interaction Studies between Polysaccharides and Dental Materials. Phys. Status Solidi A 2023, 2023, 2200834. [Google Scholar] [CrossRef]
- Taubenberger, A.V.; Hutmacher, D.W.; Müller, D.J. Single-Cell Force Spectroscopy, an Emerging Tool to Quantify Cell Adhesion to Biomaterials. Tissue Eng. Part B 2014, 20, 40–54. [Google Scholar] [CrossRef] [PubMed]
- Helenius, J.; Heisenberg, C.P.; Gaub, H.E.; Muller, D.J. Single-cell force spectroscopy. J. Cell Sci. 2008, 121, 1785–1791. [Google Scholar] [CrossRef]
- Thewes, N.; Loskill, P.; Spengler, C.; Hümbert, S.; Bischoff, M.; Jakobs, K. A detailed guideline for the fabrication of single bacterial probes used for atomic force spectroscopy. Eur. Phys. J. 2015, 38, 140. [Google Scholar] [CrossRef]
- Hofherr, L.; Chodorski, J.; Müller-Renno, C.; Ulber, R.; Ziegler, C. Comparison of Versatile Immobilization Methods for Gram-Positive Bacteria on a Silicon Cantilever. Phys. Status Solidi A 2018, 215, 1700846. [Google Scholar] [CrossRef]
- Alam, F.; Balani, K. Adhesion force of Staphylococcus aureus on various biomaterial surfaces. J. Mech. Behav. Biomed. Mater. 2017, 65, 872–880. [Google Scholar] [CrossRef] [PubMed]
- Meister, A.; Gabi, M.; Behr, P.; Studer, P.; Vörös, J.; Niedermann, P.; Bitterli, J.; Polesel-Maris, J.; Liley, M.; Heinzelmann, H.; et al. FluidFM: Combining atomic force microscopy and nanofluidics in a universal liquid delivery system for single cell applications and beyond. Nano Lett. 2009, 9, 2501–2507. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Liu, L.; Zambelli, T. FluidFM for single-cell biophysics. Nano Res. 2022, 15, 773–786. [Google Scholar] [CrossRef]
- Hofherr, L.; Müller-Renno, C.; Ziegler, C. FluidFM as a tool to study adhesion forces of bacteria—Optimization of parameters and comparison to conventional bacterial probe Scanning Force Spectroscopy. PLoS ONE 2020, 15, e0227395. [Google Scholar] [CrossRef] [PubMed]
- Potthoff, E.; Ossola, D.; Zambelli, T.; Vorholt, J.A. Bacterial adhesion force quantification by fluidic force microscopy. Nanoscale 2015, 7, 4070–4079. [Google Scholar] [CrossRef] [PubMed]
- Vukosavljevic, D.; Hutter, J.; Helmerhorst, E.; Xiao, Y.; Custódio, W.; Zaidan, J.F.; Oppenheim, F.; Siqueira, W. Nanoscale Adhesion Forces between Enamel Pellicle Proteins and Hydroxyapatite. J. Dent. Res. 2014, 93, 514–519. [Google Scholar] [CrossRef] [PubMed]
- Schwender, N.; Huber, K.; Al Marrawi, F.; Hannig, M.; Ziegler, C. Initial bioadhesion on surfaces in the oral cavity investigated by scanning force microscopy. Appl. Surf. Sci. 2005, 252, 117–122. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Zheng, J.; Zheng, L.; Zhou, Z.R. Effect of adsorption time on the adhesion strength between salivary pellicle and human tooth enamel. J. Mech. Behav. Biomed. Mater. 2015, 42, 257–266. [Google Scholar] [CrossRef]
- Link, A.; Ehnert, S.; Müller-Renno, C.; Hannig, M.; Ziegler, C. Adhesion Forces of Dextran on Dental Materials as a Function of Contact Time and pH Value. Phys. Status Solidi, 2024; submitted. [Google Scholar]
- Loskill, P.; Zeitz, C.; Grandthyll, C.; Thewes, N.; Müller, F.; Bischof, M.; Herrmann, M.; Jacobs, K. Reduced adhesion of oral bacteria on hydroxyapatite by fluoride treatment. Langmuir 2013, 29, 5528–5533. [Google Scholar] [CrossRef] [PubMed]
- Tu, Y.; Ren, H.; He, Y.; Ying, J.; Chen, Y. Interaction between microorganisms and dental material surfaces: General concepts and research progress. J. Oral Microbiol. 2023, 15, 2196897. [Google Scholar] [CrossRef] [PubMed]
- Raviraj, G.A.; Bhat, K.G.; Kugaji, M.S.; Kumbar, V.M.; Hooli, A. Study of microbial diversity in saliva and plaque samples from caries-free and caries-affected children using denaturing gradient gel electrophoresis. J. Indian Soc. Pedod. Prev. Dent. 2018, 36, 396–401. [Google Scholar] [CrossRef] [PubMed]
- Sedghi, L.; DiMassa, V.; Harrington, A.; Lynch, S.V.; Kapila, Y.L. The oral microbiome: Role of key organisms and complex networks in oral health and disease. Periodontology 2021, 87, 107–131. [Google Scholar] [CrossRef] [PubMed]
- Gunaratnam, G.; Dudek, J.; Jung, P.; Becker, S.L.; Jacobs, K.; Bischoff, M.; Hannig, M. Quantification of the Adhesion Strength of Candida albicans to Tooth Enamel. Microorganisms 2021, 9, 2213. [Google Scholar] [CrossRef] [PubMed]
- Sotres, J.; Lindh, L.; Arnebrant, T. Friction force spectroscopy as a tool to study the strength and structure of salivary films. Langmuir 2011, 27, 13692–13700. [Google Scholar] [CrossRef] [PubMed]
- Hahn-Berg, I.C.; Rutland, M.W.; Arnebrant, T. Lubricating properties of the initial salivary pellicle—An AFM study. Biofouling 2003, 19, 365–369. [Google Scholar] [CrossRef] [PubMed]
- Hahn-Berg, I.C.; Lindh, L.; Arnebrant, T. Intraoral Lubrication of PRP-1, Statherin and Mucin as Studied by AFM. Biofouling 2004, 20, 65–70. [Google Scholar] [CrossRef]
- Huttenlochner, K.; Davoudi, N.; Schlegel, C.; Bohley, M.; Müller-Renno, C.; Aurich, J.C.; Ulber, R.; Ziegler, C. Paracoccus seriniphilus adhered on surfaces: Resistance of a seawater bacterium against shear forces under the influence of roughness, surface energy, and zeta potential of the surfaces. Biointerphases 2018, 13, 051003. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Müller-Renno, C.; Ziegler, C. The Contribution of Scanning Force Microscopy on Dental Research: A Narrative Review. Materials 2024, 17, 2100. https://doi.org/10.3390/ma17092100
Müller-Renno C, Ziegler C. The Contribution of Scanning Force Microscopy on Dental Research: A Narrative Review. Materials. 2024; 17(9):2100. https://doi.org/10.3390/ma17092100
Chicago/Turabian StyleMüller-Renno, Christine, and Christiane Ziegler. 2024. "The Contribution of Scanning Force Microscopy on Dental Research: A Narrative Review" Materials 17, no. 9: 2100. https://doi.org/10.3390/ma17092100
APA StyleMüller-Renno, C., & Ziegler, C. (2024). The Contribution of Scanning Force Microscopy on Dental Research: A Narrative Review. Materials, 17(9), 2100. https://doi.org/10.3390/ma17092100