Quasi-In Situ Observation of the Microstructural Response during Fatigue Crack Growth of Friction Stir Welded AA2024-T4 Joint
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Friction Stir Welding
2.2. Fatigue Crack Growth Test
2.3. EBSD Examination
3. Results
3.1. Microstructure of the Joint
3.2. FCG Behavior at Different Regions
4. Discussion
4.1. Observation of the Microstructure at FCG Path
4.2. Microstructural Response of the Joint during the FCG Process at the AS and RS
4.3. Morphology of the Cracks
5. Conclusions
- (1)
- The welding process improved the joint’s resistance to fatigue crack growth, with the base metal (CT-BM) exhibiting a shorter fatigue life compared to the welding zones (the SZ, AS, and RS). The SZ (Str-CT-SZ) demonstrated the highest fatigue load cycle. The FCG behaviors of the BM, SZ, AS, and RS were characterized using the Paris model.
- (2)
- In the base metal, straight crack propagation characteristics were observed. In the SZ, cracks propagated through refined grains, contributing to the highest fatigue life and lowest FCG rate. Cracks initiated at the AS or RS and expanded towards the base metal.
- (3)
- The phenomenon of the FCG rate of Str-CT-AS being higher than Str-CT-RS, despite similar microstructural features along the crack path at the AS and RS, was clarified. The significant release of residual strain in the Str-CT-RS sample compared to Str-CT-AS explained this difference. When the crack expanded at the AS, the residual strain in the joint was not fully relieved, leading to a slightly higher FCG rate in Str-CT-AS compared to Str-CT-RS.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Isa, M.S.M.; Moghadasi, K.; Ariffin, M.A.; Raja, S.; bin Muhamad, M.R.; Yusof, F.; Jamaludin, M.F.; bin Yusoff, N.; bin Ab Karim, M.S. Recent research progress in friction stir welding of aluminium and copper dissimilar joint: A review. J. Mater. Res. Technol. 2021, 15, 2735–2780. [Google Scholar] [CrossRef]
- Singh, V.P.; Patel, S.K.; Ranjan, A.; Kuriachen, B. Recent research progress in solid state friction-stir welding of aluminium–magnesium alloys: A critical review. J. Mater. Res. Technol. 2020, 9, 6217–6256. [Google Scholar] [CrossRef]
- Bocchi, S.; D’Urso, G.; Giardini, C. The effect of heat generated on mechanical properties of friction stir welded aluminum alloys. Int. J. Adv. Manuf. Technol. 2021, 112, 1513–1528. [Google Scholar] [CrossRef]
- Rajak, D.K.; Pagar, D.D.; Menezes, P.L.; Eyvazian, A. Friction-based welding processes: Friction welding and friction stir welding. J. Adhes. Sci. Technol. 2020, 34, 2613–2637. [Google Scholar] [CrossRef]
- Mohan, D.G.; Wu, C.S. A review on friction stir welding of steels. Chin. J. Mech. Eng. 2021, 34, 137. [Google Scholar] [CrossRef]
- Ambrosio, D.; Morisada, Y.; Ushioda, K.; Fujii, H. Material flow in friction stir welding: A review. J. Mater. Process. Technol. 2023, 320, 118116. [Google Scholar] [CrossRef]
- Xie, Y.; Meng, X.; Wang, F.; Jiang, Y.; Ma, X.; Wan, L.; Huang, Y. Insight on corrosion behavior of friction stir welded AA2219/AA2195 joints in astronautical engineering. Corros. Sci. 2021, 192, 109800. [Google Scholar] [CrossRef]
- Salih, O.S.; Ou, H.; Sun, W. Heat generation, plastic deformation and residual stresses in friction stir welding of aluminum alloy. Int. J. Mech. Sci. 2023, 238, 107827. [Google Scholar] [CrossRef]
- Chhangani, S.; Masa, S.K.; Mathew, R.T.; Prasad, M.J.N.V.; Sujata, M. Microstructural evolution in Al–Mg–Sc alloy (AA5024): Effect of thermal treatment, compression deformation and friction stir welding. Mater. Sci. Eng. A 2020, 772, 138790. [Google Scholar] [CrossRef]
- Ahmed, M.M.; El-Sayed Seleman, M.M.; Fydrych, D.; Çam, G. Friction stir welding of aluminum in the aerospace industry: The current progress and state-of-the-art review. Materials 2023, 16, 2971. [Google Scholar] [CrossRef]
- Malopheyev, S.; Vysotskiy, I.; Kulitskiy, V.; Mironov, S.; Kaibyshev, R. Optimization of processing-microstructure-properties relationship in friction-stir welded 6061-T6 aluminum alloy. Mater. Sci. Eng. A 2016, 662, 136–143. [Google Scholar] [CrossRef]
- Huang, B.; Wang, L.; Hui, L.; Cong, J.; Zhou, S. Analysis of multi-zone fatigue crack growth behavior of friction stir welded 5083 aluminum alloy. J. Mater. Eng. Perform. 2022, 31, 53–63. [Google Scholar] [CrossRef]
- Yang, Y.; Bi, J.; Liu, H.; Li, Y.; Li, M.; Ao, S.; Luo, Z. Research progress on the microstructure and mechanical properties of friction stir welded AlLi alloy joints. J. Manuf. Process. 2022, 82, 230–244. [Google Scholar] [CrossRef]
- Okada, T.; Machida, S.; Watanabe, N. Fatigue life and fatigue crack growth behavior of nonthrough cracks in friction stir-welded 2024-T3 aluminum alloy. Trans. Jpn. Soc. Aeronaut. Space Sci. 2019, 62, 20–31. [Google Scholar] [CrossRef]
- Wang, R.; Kang, H.T.; Lei, X. Fatigue performance and strength assessment of AA2024 alloy friction stir lap welds. J. Mater. Eng. Perform. 2020, 29, 6701–6713. [Google Scholar] [CrossRef]
- Du, C.; Pan, Q.; Chen, S.; Tian, S. Effect of rolling process on fatigue performance of stir zone of AA6061-T6 doube-side friction stir welding joint. Fatigue Fract. Eng. Mater. Struct. 2021, 44, 748–761. [Google Scholar] [CrossRef]
- Vuherer, T.; Milčić, M.; Glodež, S.; Milčić, D.; Radović, L.; Kramberger, J. Fatigue and fracture behaviour of Friction Stir Welded AA-2024-T351 joints. Theor. Appl. Fract. Mech. 2021, 114, 103027. [Google Scholar] [CrossRef]
- Zhang, L.; Zhong, H.; Li, S.; Zhao, H.; Chen, J.; Qi, L. Microstructure, mechanical properties and fatigue crack growth behavior of friction stir welded joint of 6061-T6 aluminum alloy. Int. J. Fatigue 2020, 135, 105556. [Google Scholar] [CrossRef]
- Satyanarayana, M.; Bathula, S.; Kumar, A. Effect of external cooling on fatigue crack growth behaviour of friction stir processed AA6061 alloy. Eng. Fract. Mech. 2022, 261, 108236. [Google Scholar] [CrossRef]
- Nakrani, J.; Yan, W.; Shrivastava, A. Effect of notch location on fatigue crack growth behavior for inhomogeneous material domains in friction stir welded magnesium alloy. Int. J. Fatigue 2023, 177, 107956. [Google Scholar] [CrossRef]
- Qian, J.; Li, J.; Sun, F.; Xiong, J.; Zhang, F.; Lin, X. An analytical model to optimize rotation speed and travel speed of friction stir welding for defect-free joints. Scr. Mater. 2013, 68, 175–178. [Google Scholar] [CrossRef]
- ASTM E647; Standard Test Method for Measurement of Fatigue Crack Growth Rates. ASTM: West Conshohocken, PA, USA, 2023.
- Bernardi, M.; Suhuddin, U.F.H.; Fu, B.; Gerber, J.P.; Bianchi, M.; Ostrovsky, I.; Sievers, B.; Faes, K.; Maawad, E.; Lazzeri, L.; et al. Fatigue behaviour of multi-spot joints of 2024-T3 aluminium sheets obtained by refill Friction Stir Spot Welding with polysulfide sealant. Int. J. Fatigue 2023, 172, 107539. [Google Scholar] [CrossRef]
- Li, H.; Zhao, W.; Zhang, Y.; Zio, E. Remaining useful life prediction using multi-scale deep convolutional neural network. Appl. Soft Comput. 2020, 89, 106113. [Google Scholar] [CrossRef]
- ASTM-A370; Standard Test Methods and Definitions for Mechanical Testing of Steel Products. American Society for Testing and Materials: West Conshohocken, PA, USA, 2023.
- Song, Y.; Chai, M.; Han, Z. Experimental investigation of fatigue crack growth behavior of the 2.25Cr1Mo0.25V steel welded joint used in hydrogenation Reactors. Materials 2021, 14, 1159. [Google Scholar] [CrossRef]
- Song, W.; Man, Z.; Xu, J.; Wang, X.; Liu, C.; Zhou, G.; Berto, F. Fatigue crack growth behavior of different zones in an overmatched welded joint made with D32 marine structural steel. Metals 2023, 13, 535. [Google Scholar] [CrossRef]
Location | R2 | m | lgC | C |
---|---|---|---|---|
BM | 0.76 | 3.29 | −6.98 | 1.05 × 10−7 |
SZ | 0.77 | 5.79 | −9.92 | 1.20 × 10−10 |
AS | 0.69 | 4.98 | −8.95 | 1.12 × 10−9 |
RS | 0.65 | 5.25 | −9.31 | 4.89 × 10−10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Chen, X.; Zhao, H.; Dong, J.; Jin, F. Quasi-In Situ Observation of the Microstructural Response during Fatigue Crack Growth of Friction Stir Welded AA2024-T4 Joint. Materials 2024, 17, 2106. https://doi.org/10.3390/ma17092106
Yang J, Chen X, Zhao H, Dong J, Jin F. Quasi-In Situ Observation of the Microstructural Response during Fatigue Crack Growth of Friction Stir Welded AA2024-T4 Joint. Materials. 2024; 17(9):2106. https://doi.org/10.3390/ma17092106
Chicago/Turabian StyleYang, Jun, Xianmin Chen, Huaxia Zhao, Jihong Dong, and Feng Jin. 2024. "Quasi-In Situ Observation of the Microstructural Response during Fatigue Crack Growth of Friction Stir Welded AA2024-T4 Joint" Materials 17, no. 9: 2106. https://doi.org/10.3390/ma17092106
APA StyleYang, J., Chen, X., Zhao, H., Dong, J., & Jin, F. (2024). Quasi-In Situ Observation of the Microstructural Response during Fatigue Crack Growth of Friction Stir Welded AA2024-T4 Joint. Materials, 17(9), 2106. https://doi.org/10.3390/ma17092106