Iron–Carbon Nanospheres as Promising Material for Magnetic Assisted Adsorption and Separation of Impurities from a Liquid Phase
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Structural Characterization
3.2. Magnetometric Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, J.; Qiao, S.Z.; Liu, H.; Chen, J.; Orpe, A.; Zhao, D.; Lu, D.Q.M. Extension of the Stöber method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres. Angew. Chem. Int. Ed. 2011, 50, 5947–5951. [Google Scholar] [CrossRef]
- Sibera, D.; Narkiewicz, U.; Kapica, J.; Serafin, J.; Michalkiewicz, B.; Wróbel, R.J.; Morawski, A.W. Preparation and characterisation of carbon spheres for carbon dioxide capture. J. Por. Mater. 2019, 26, 19–27. [Google Scholar] [CrossRef]
- Das, A.; Maji, K.; Naskar, S.; Manna, U. Facile optimization of hierarchical topography and chemistry on magnetically active graphene oxide nanosheets. Chem. Sci. 2020, 11, 6556–6566. [Google Scholar] [CrossRef] [PubMed]
- Pourzare, K.; Farhadi, S.; Mansourpanah, Y. Graphene oxide/Co3O4 nanocomposite: Synthesis, characterization, and its adsorption capacity for the removal of organic dye pollutants from water. Acta Chim. Slov. 2017, 64, 945–958. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Zhu, S.; Zhang, D.; Xu, S. Synthesis and properties of magnetic Fe3O4-activated carbon nanocomposite particles for dye removal. Mater. Lett. 2008, 62, 645–647. [Google Scholar] [CrossRef]
- Renu; Agarwal, M.; Singh, K. Heavy metal removal from wastewater using various adsorbents: A review. J. Water Reuse Desalin. 2024, 7, 387–419. [Google Scholar] [CrossRef]
- Li, W.K.; Shi, Y.P. Recent advances of carbon materials on pesticides removal and extraction based determination from polluted water. Trac-Trends Anal. Chem. 2024, 171, 117534. [Google Scholar] [CrossRef]
- Luján-Facundo, M.I.; Iborra-Clar, M.I.; Mendoza-Roca, J.A.; Alcaina-Miranda, M.I. Pharmaceutical compounds removal by adsorption with commercial and reused carbon coming from a drinking water treatment plant. J. Clean. Prod. 2019, 238, 1178766. [Google Scholar] [CrossRef]
- Tkaczyk, A.; Mitrowska, K.; Posyniak, A. Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review. Sci. Total Environ. 2020, 717, 137222. [Google Scholar] [CrossRef]
- Moosavi, S.; Lai, C.W.; Gan, S.; Zamiri, G.; Pivehzhani, O.A.; Johan, M.R. Application of Efficient Magnetic Particles and Activated Carbon for Dye Removal from Wastewater. ACS Omega 2020, 5, 20684–20697. [Google Scholar] [CrossRef] [PubMed]
- Staciwa, P.; Sibera, D.; Pelech, I.; Narkiewicz, U.; Lojkowski, W.; Dabrowska, S.; Cormia, R. Effect of microwave assisted solvothermal process parameters on carbon dioxide adsorption properties of microporous carbon materials. Microporous Mesoporous Mater. 2021, 314, 110829. [Google Scholar] [CrossRef]
- Pelech, I.; Staciwa, P.; Sibera, D.; Pelech, R.; Sobczuk, K.S.; Kayalar, G.Y.; Narkiewicz, U.; Cormia, R. CO2 Adsorption Study of Potassium-Based Activation of Carbon Spheres. Molecules 2022, 27, 5379. [Google Scholar] [CrossRef] [PubMed]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Knobel, M.; Nunes, W.C.; Socolovsky, L.M.; De Biasi, E.; Vargas, J.M.; Denardin, J.C. Superparamagnetism and other mag-netic features in granular materials: A review on ideal andreal systems. J. Nanosci. Nanotechnol. 2008, 8, 2836–2857. [Google Scholar] [CrossRef] [PubMed]
- Dormann, J.L.; Bessais, L.; Fiorani, D. A dynamic study of small interacting particles: Superparamagnetic model and spin-glass laws. J. Phys. C Solid State Phys. 2015, 21, 2015–2034. [Google Scholar] [CrossRef]
- Lee, Y.H.; Han, T.C.; Huang, J.C.A. Magnetic properties of Fe3C nanograins embedded in carbon matrix. J. Appl. Phys. 2003, 93, 8462–8464. [Google Scholar] [CrossRef]
- Cohn, E.M.; Hofer, L.J.E. Some thermal reactions of the higher iron carbides. J. Chem. Phys. 1953, 21, 354–359. [Google Scholar] [CrossRef]
- Smith, S.W.J.; White, W.; Barker, S.G. The Magnetic Transition Temperature of Cementite. Proc. Phys. Soc. Lond. 1911, 24, 62–69. [Google Scholar] [CrossRef]
- Yang, Z.; Zhao, T.; Huang, X.; Chu, X.; Tang, T.; Ju, Y.; Wang, Q.; Hou, Y.; Gao, S. Modulating the phases of iron carbide nanoparticles: From a perspective of interfering with the carbon penetration of Fe@Fe3O4 by selectively adsorbed halide ions. Chem. Sci. 2017, 8, 473–481. [Google Scholar] [CrossRef]
- Chaira, D.; Mishra, B.K.; Sangal, S. Magnetic properties of cementite powder produced by reaction milling. J. Alloys Compd. 2009, 474, 396–400. [Google Scholar] [CrossRef]
- Okamoto, H.; Schlesinger, M.E.; Mueller, E.M. (Eds.) Alloy Phase Diagrams. In ASM Handbook; ASM International: Almere, The Netherlands, 1992; Volume 3, ISBN 978-1-62708-070-5. [Google Scholar]
- Waltz, F. The Verwey transition—A topical review. J. Phys. Condens. Matter. 2002, 14, R285. [Google Scholar] [CrossRef]
- Néel, L. Propriétés magnétiques des ferrites; ferrimagnétisme et antiferromagnétisme. Anneles Phys. 1948, 3, 137. [Google Scholar] [CrossRef]
No. | Iron Precursor | Activator |
---|---|---|
S1 | Fe(NO3)3·9H2O | No |
S2 | FeCl3·6H2O | No |
S3 | C6H5O7Fe | No |
S4 | C6H5O7Fe | K2C2O4·H2O |
S5 | C6H5O7Fe | KOH |
S6 | FeCl3·6H2O | KOH |
S7 | Fe(NO3)3·9H2O | K2C2O4·H2O |
S8 | FeCl3·6H2O | K2C2O4·H2O |
No. | SBET [m2/g] | TPV [cm3/g] | Vmic [cm3/g] |
---|---|---|---|
S1 | 476 | 0.46 | 0.18 |
S2 | 503 | 0.41 | 0.22 |
S3 | 400 | 0.33 | 0.13 |
S4 | 656 | 0.48 | 0.27 |
S5 | 991 | 0.78 | 0.39 |
S6 | 1095 | 0.86 | 0.46 |
S7 | 136 | 0.12 | 0.06 |
S8 | 780 | 0.60 | 0.33 |
No. | Phases | MS [emu/g] 4.5 K/300 K | HC [mT] 4.5 K/300 K | MR [emu/g] 4.5 K |
---|---|---|---|---|
S1 | Fe3C | 8.5/6.8 | 233/49 | 4.0 |
S2 | Fe | 11.2/10.8 | 16/8 | 0.38 |
S3 | Fe3C | 7.8/6.8 | 183/44 | 3.6 |
S4 | Fe3C, Fe | 24.8/21.3 | 66/27 | 4.5 |
S5 | Fe3C, Fe | 13.2/10.5 | 44/26 | 1.6 |
S6 | Fe3C, Fe | 14.2/13.7 | 46/20 | 1.6 |
S7 | Fe, Fe3O4, FeO | 14.6/12.9 | 46/10 | 1.9 |
S8 | Fe3C, Fe, Fe3O4 | 21.9/17.7 | 42/12 | 4.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pełech, I.; Lewinska, S.; Arciszewska, M.; Khaliq, A.; Ślawska-Waniewska, A.; Sibera, D.; Staciwa, P.; Narkiewicz, U. Iron–Carbon Nanospheres as Promising Material for Magnetic Assisted Adsorption and Separation of Impurities from a Liquid Phase. Materials 2024, 17, 2111. https://doi.org/10.3390/ma17092111
Pełech I, Lewinska S, Arciszewska M, Khaliq A, Ślawska-Waniewska A, Sibera D, Staciwa P, Narkiewicz U. Iron–Carbon Nanospheres as Promising Material for Magnetic Assisted Adsorption and Separation of Impurities from a Liquid Phase. Materials. 2024; 17(9):2111. https://doi.org/10.3390/ma17092111
Chicago/Turabian StylePełech, Iwona, Sabina Lewinska, Monika Arciszewska, Abdul Khaliq, Anna Ślawska-Waniewska, Daniel Sibera, Piotr Staciwa, and Urszula Narkiewicz. 2024. "Iron–Carbon Nanospheres as Promising Material for Magnetic Assisted Adsorption and Separation of Impurities from a Liquid Phase" Materials 17, no. 9: 2111. https://doi.org/10.3390/ma17092111
APA StylePełech, I., Lewinska, S., Arciszewska, M., Khaliq, A., Ślawska-Waniewska, A., Sibera, D., Staciwa, P., & Narkiewicz, U. (2024). Iron–Carbon Nanospheres as Promising Material for Magnetic Assisted Adsorption and Separation of Impurities from a Liquid Phase. Materials, 17(9), 2111. https://doi.org/10.3390/ma17092111