Investigation of Mechanical Properties of Polymer-Infiltrated Tetrapodal Zinc Oxide in Different Variants
Abstract
:1. Introduction
2. Material and Methods
2.1. Specimen and Precursor Preparation
2.2. Material Science Experiments
2.2.1. Three-Point Bending Test
2.2.2. Wear Evaluation
3. Results
3.1. Three-Point Bending Test
3.2. Wear Evaluation
4. Discussion
5. Conclusions
- The use of a phosphate-monomer-containing primer improves the elastic modulus and flexural strength of the tested PICNs.
- A higher weight ratio significantly increases the flexural strength, while the formation of sail structures in the tested PICNs improves the elastic modulus.
- To optimize these PICN material properties from a dental point of view, thicker tetrapods should be used than those in this study, which cause sail formation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dupriez, N.D.; von Koeckritz, A.-K.; Kunzelmann, K.-H. A comparative study of sliding wear of nonmetallic dental restorative materials with emphasis on micromechanical wear mechanisms. J. Biomed. Mater. Res. B Appl. Biomater. 2015, 103, 925–934. [Google Scholar] [CrossRef]
- Palaniappan, S.; Elsen, L.; Lijnen, I.; Peumans, M.; Van Meerbeek, B.; Lambrechts, P. Nanohybrid and microfilled hybrid versus conventional hybrid composite restorations: 5-year clinical wear performance. Clin. Oral Investig. 2012, 16, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Ilie, N.; Hickel, R. Resin composite restorative materials. Aust. Dent. J. 2011, 56 (Suppl. S1), 59–66. [Google Scholar] [CrossRef]
- Ruse, N.; Sadoun, M. Resin-composite blocks for dental CAD/CAM applications. J. Dent. Res. 2014, 93, 1232–1234. [Google Scholar] [CrossRef] [PubMed]
- Miletic, V. Development of dental composites. In Dental Composite Materials for Direct Restorations; Springer: Berlin/Heidelberg, Germany, 2018; pp. 3–9. [Google Scholar]
- Ilie, N.; Hickel, R. Investigations on mechanical behaviour of dental composites. Clin. Oral Investig. 2009, 13, 427–438. [Google Scholar] [CrossRef] [PubMed]
- Zimmerli, B.; Strub, M.; Jeger, F.; Stadler, O.; Lussi, A. Composite materials: Composition, properties and clinical applications. A literature review. Schweiz Monatsschr Zahnmed 2010, 120, 972–986. [Google Scholar] [PubMed]
- Le Roux, A.R.; Lachman, N. Dental composite materials: Highlighting the problem of wear for posterior restorations. Sadj 2007, 62, 342–344. [Google Scholar] [PubMed]
- Hosseinalipour, M.; Javadpour, J.; Rezaie, H.; Dadras, T.; Hayati, A.N. Investigation of mechanical properties of experimental Bis-GMA/TEGDMA dental composite resins containing various mass fractions of silica nanoparticles. J. Prosthodont. 2010, 19, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Eskandarion, S.; Neshandar, M.; Rokhshad, R. Classifications and Properties of Materials for Chairside Computer-Aided Design/Computer-Aided Manufacturing Dentistry: A Review. J. Res. Dent. Maxillofac. Sci. 2021, 6, 36–50. [Google Scholar]
- Coldea, A.; Swain, M.V.; Thiel, N. Mechanical properties of polymer-infiltrated-ceramic-network materials. Dent. Mater. 2013, 29, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Kang, L.; Zhou, Y.; Lan, J.; Yu, Y.; Cai, Q.; Yang, X. Effect of resin composition on performance of polymer-infiltrated feldspar-network composites for dental restoration. Dent. Mater. J. 2020, 39, 900–908. [Google Scholar] [CrossRef] [PubMed]
- Eldafrawy, M.; Nguyen, J.; Mainjot, A.; Sadoun, M. A functionally graded PICN material for biomimetic CAD-CAM blocks. J. Dent. Res. 2018, 97, 1324–1330. [Google Scholar] [CrossRef] [PubMed]
- Tokunaga, J.; Ikeda, H.; Nagamatsu, Y.; Awano, S.; Shimizu, H. Wear of polymer-infiltrated ceramic network materials against enamel. Materials 2022, 15, 2435. [Google Scholar] [CrossRef] [PubMed]
- Manoharan, M.P.; Desai, A.V.; Neely, G.; Haque, M.A. Synthesis and elastic characterization of zinc oxide nanowires. J. Nanomater. 2008, 2008, 849745. [Google Scholar] [CrossRef]
- O׳Brien, S.; Shaw, J.; Zhao, X.; Abbott, P.V.; Munroe, P.; Xu, J.; Habibi, D.; Xie, Z. Size dependent elastic modulus and mechanical resilience of dental enamel. J. Biomech. 2014, 47, 1060–1066. [Google Scholar] [CrossRef] [PubMed]
- Wille, S.; Lehmann, F.; Kern, M. Durability of resin bonding to lithium disilicate and zirconia ceramic using a self-etching primer. J. Adhes Dent. 2017, 19, 491–496. [Google Scholar] [PubMed]
- Kitayama, S.; Nikaido, T.; Takahashi, R.; Zhu, L.; Ikeda, M.; Foxton, R.M.; Sadr, A.; Tagami, J. Effect of primer treatment on bonding of resin cements to zirconia ceramic. Dent. Mater. 2010, 26, 426–432. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Sigmund, W. ZnO nanocrystals synthesized by physical vapor deposition. J. Nanosci. Nanotechnol. 2004, 4, 275–278. [Google Scholar] [CrossRef] [PubMed]
- Mishra, Y.K.; Modi, G.; Cretu, V.; Postica, V.; Lupan, O.; Reimer, T.; Paulowicz, I.; Hrkac, V.; Benecke, W.; Kienle, L.; et al. Direct growth of freestanding ZnO tetrapod networks for multifunctional applications in photocatalysis, UV photodetecton, and gas sensing. ACS Appl. Mater. Interfaces 2015, 7, 14303–14316. [Google Scholar] [CrossRef] [PubMed]
- Paulowicz, I.; Postica, V.; Lupan, O.; Wolff, N.; Shree, S.; Cojocaru, A.; Deng, M.; Mishra, Y.K.; Tiginyanu, I.; Kienle, L.; et al. Zinc oxide nanotetrapods with four different arm morphologies for versatile nanosensors. Sens. Actuators B Chem. 2018, 262, 425–435. [Google Scholar] [CrossRef]
- Lambrechts, P.; Braem, M.; Vanherle, J. Evaluation of clinical performance for posterior composite resins and dentin adhesives. Oper. Dent. Seattle Wash 1987, 12, 41–88. [Google Scholar]
- Zhang, Y.; Hedo, R.; Rivera, A.; Rull, R.; Richardson, S.; Tu, X.M. Post hoc power analysis: Is it an informative and meaningful analysis? Gen. Psychiatry 2019, 32, e100069. [Google Scholar] [CrossRef] [PubMed]
- Nasajpour, A.; Mandla, S.; Shree, S.; Mostafavi, E.; Sharifi, R.; Khalilpour, A.; Saghazadeh, S.; Hassan, S.; Mitchell, M.J.; Leijten, J.; et al. Nanostructured fibrous membranes with rose spike-like architecture. Nano Lett. 2017, 17, 6235–6240. [Google Scholar] [CrossRef] [PubMed]
- Gull, N.; Khan, S.M.; Munawar, M.A.; Shafiq, M.; Anjum, F.; Butt, M.T.Z.; Jamil, T. Synthesis and characterization of zinc oxide (ZnO) filled glass fiber reinforced polyester composites. Mater. Des. 2015, 67, 313–317. [Google Scholar] [CrossRef]
- Cadek, M.; Coleman, J.N.; Ryan, K.P.; Nicolosi, V.; Bister, G.; Fonseca, A.; Nagy, J.B.; Szostak, K.; Béguin, F.; Blau, W.J. Reinforcement of polymers with carbon nanotubes: The role of nanotube surface area. Nano Lett. 2004, 4, 353–356. [Google Scholar] [CrossRef]
- Jin, X.; Deng, M.; Kaps, S.; Zhu, X.; Hölken, I.; Mess, K.; Adelung, R.; Mishra, Y.K. Study of tetrapodal ZnO-PDMS composites: A comparison of fillers shapes in stiffness and hydrophobicity improvements. PLoS ONE 2014, 9, e106991. [Google Scholar] [CrossRef] [PubMed]
- Palacios, T.; Tarancón, S.; Pastor, J.Y. On the mechanical properties of hybrid dental materials for CAD/CAM restorations. Polymers 2022, 14, 3252. [Google Scholar] [CrossRef] [PubMed]
- EN ISO 10477:2018; Dentistry—Polymer-Based Crown and Veneering Materials. International Organization for Standardization: Vernier, Switzerland, (In German). [CrossRef]
- Cui, B.; Li, J.; Wang, H.; Lin, Y.; Shen, Y.; Li, M.; Deng, X.; Nan, C. Mechanical properties of polymer-infiltrated-ceramic (sodium aluminum silicate) composites for dental restoration. J. Dent. 2017, 62, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Windle, C.B.; Hill, A.E.; Tantbirojn, D.; Versluis, A. Dual-cure dental composites: Can light curing interfere with conversion? J. Mech. Behav. Biomed. Mater. 2022, 132, 105289. [Google Scholar] [CrossRef] [PubMed]
- Wille, S.; Sieper, K.; Kern, M. Wear resistance of crowns made from different CAM/CAD materials. Dent. Mater. 2021, 37, e407–e413. [Google Scholar] [CrossRef] [PubMed]
- Heintze, S.; Cavalleri, A.; Forjanic, M.; Zellweger, G.; Rousson, V. Wear of ceramic and antagonist—A systematic evaluation of influencing factors in vitro. Dent. Mater. 2008, 24, 433–449. [Google Scholar] [CrossRef] [PubMed]
- Hamed, W.M.; Anwar, E.; Adel, R.; Aboushahba, M.; Abdeen, M.F.; Dagal, R.S.; Rizq, M.H. Surface roughness of two different monolithic materials after chewing simulation. J. Int. Oral Health 2020, 12, 47–52. [Google Scholar] [CrossRef]
Precursor Particle | Zinc Oxide Weight Ratio | Primer Application | Group Code |
---|---|---|---|
Sail structure | 60 wt.% | No | S-60-N |
Yes | S-60-P | ||
75 wt.% | No | S-75-N | |
Yes | S-75-P | ||
Tetrapodal structure | 60 wt.% | No | T-60-N |
Yes | T-60-P | ||
75 wt.% | No | T-75-N | |
Yes | T-75-P |
Precursor Particles | Functionalization with Primer | 60 wt.% | 75 wt.% | |
---|---|---|---|---|
sail structure | No | Mean SD | 4.6 Bbα (0.6) | 14.2 Aaα (2.1) |
sail structure | Yes | Mean SD | 6.0 Baα (1.0) | 14.2 Aaα (1.3) |
tZnO | No | Mean SD | 4.3 Bbα (0.5) | 8.3 Abβ (0.7) |
tZnO | Yes | Mean SD | 5.9 Baα (0.6) | 11.8 Aaβ (1.4) |
Precursor Particles | Functionalization with Primer | 60 wt.% | 75 wt.% | |
---|---|---|---|---|
sail structure | No | Mean SD | 37.8 Abβ (5.0) | 38.3 Abβ (3.8) |
sail structure | Yes | Mean SD | 65.3 Aaβ (8.2) | 69.4 Aaβ (9.8) |
tZnO | No | Mean SD | 59.4 Abα (5.2) | 55.1 Bbα (2.5) |
tZnO | Yes | Mean SD | 102.8 Aaα (8.5) | 94.2 Baα (10.3) |
Precursor Particles | Functionalization with Primer | 60 wt.% | 75 wt.% | |
---|---|---|---|---|
sail structure | No | Mean SD | 244 Baα (76) | 854 Aaα (437) |
sail structure | Yes | Mean SD | 317 Aaα (82) | 229 Bbα (80) |
tZnO | No | Mean SD | 286 Aaα (116) | 254 Aaβ (56) |
tZnO | Yes | Mean SD | 213 Aaβ (81) | 289 Aaα (84) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scherer, F.; Wille, S.; Saure, L.; Schütt, F.; Wellhäußer, B.; Adelung, R.; Kern, M. Investigation of Mechanical Properties of Polymer-Infiltrated Tetrapodal Zinc Oxide in Different Variants. Materials 2024, 17, 2112. https://doi.org/10.3390/ma17092112
Scherer F, Wille S, Saure L, Schütt F, Wellhäußer B, Adelung R, Kern M. Investigation of Mechanical Properties of Polymer-Infiltrated Tetrapodal Zinc Oxide in Different Variants. Materials. 2024; 17(9):2112. https://doi.org/10.3390/ma17092112
Chicago/Turabian StyleScherer, Franziska, Sebastian Wille, Lena Saure, Fabian Schütt, Benjamin Wellhäußer, Rainer Adelung, and Matthias Kern. 2024. "Investigation of Mechanical Properties of Polymer-Infiltrated Tetrapodal Zinc Oxide in Different Variants" Materials 17, no. 9: 2112. https://doi.org/10.3390/ma17092112
APA StyleScherer, F., Wille, S., Saure, L., Schütt, F., Wellhäußer, B., Adelung, R., & Kern, M. (2024). Investigation of Mechanical Properties of Polymer-Infiltrated Tetrapodal Zinc Oxide in Different Variants. Materials, 17(9), 2112. https://doi.org/10.3390/ma17092112