Forging-Submerged Arc Additive Hybrid Manufacturing of the Mn-Mo-Ni Component: In Situ Reheat Cycles Inducing the Homogenization of the HAZ Microstructure
Abstract
:1. Introduction
2. Materials and Experimental Procedures
2.1. Forging-Submerged Arc Additive Hybrid Manufacturing Deposition
2.2. Microstructural Characterization
2.3. Mechanical Properties
3. Results
3.1. Microscopic Characterization
3.1.1. Microstructure of the HAZ
3.1.2. Crystallographic
3.2. Mechanical Properties
3.2.1. Microhardness
3.2.2. Charpy Impact Tests
4. Discussion
4.1. Transition of Bainites
4.2. Toughening Mechanism
4.3. The Effects of Preheating and Heat Input on the HAZ
5. Conclusions
- A hybrid Mn-Mo-Ni component with the matrix retained was successfully obtained through forging-submerged arc additive hybrid manufacturing. The microstructure of the HAZ evolved from heterogeneous in various regions to homogeneous throughout by the in situ reheat cycles of the submerged arc heat source, without the presence of sub-zones.
- The HAZ was mainly composed of cementite and PF. The presence of PF promoted the formation of more than 50% of HAGBs. The microhardness of the HAZ was approximately 278.7 HV10, and the impact absorption energy at −60 °C was 96.7 ± 16.8 J, under the unique in situ reheating cycle of the submerged arc heat source.
- The appropriate heat input can better exploit the in situ reheat cycles of the submerged arc heat source to induce the formation of fully equiaxed grains within the HAZ, which enhances the low-temperature impact toughness. In this paper, an appropriate heat input resulted in an increase in low-temperature impact toughness from 96.7 J to 113 J at −60 °C.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Z.; Wang, X.; Miller, R.E.; Hu, J.; Chen, X. Fracture toughness of thermal aged 16MND5 bainitic forging steel under varying 3D constraint conditions: An experimental study using SENT specimens. Theor. Appl. Fract. Mech. 2021, 114, 103025. [Google Scholar] [CrossRef]
- Davies, L.M. A comparison of Western and Eastern nuclear reactor pressure vessel steels. Int. J. Press. Vessel. Pip. 1999, 76, 163–208. [Google Scholar] [CrossRef]
- Qian, G.; Lei, W.S.; Niffenegger, M.; González-Albuixech, V.F. On the temperature independence of statistical model parameters for cleavage fracture in ferritic steels. Philos. Mag. 2018, 98, 959–1004. [Google Scholar] [CrossRef]
- Hsu, C.Y.; Stodolna, J.; Todeschini, P.; Delabrouille, F.; Christien, F. Effect of bainitic or martensitic microstructure of a pressure vessel steel on grain boundary segregation induced by step cooling simulating thermal aging. J. Nucl. Mater. 2023, 584, 154554. [Google Scholar] [CrossRef]
- Chen, X.; Ren, B.; Yu, D.; Xu, B.; Zhang, Z.; Chen, G. Uniaxial low cycle fatigue behavior for pre-corroded 16MND5 bainitic steel in simulated pressurized water reactor environment. J. Nucl. Mater. 2018, 504, 267–276. [Google Scholar] [CrossRef]
- Zhan, L.; Bo, Y.; Lin, T.; Fan, Z. Development and outlook of advanced nuclear energy technology. Energy Strategy Rev. 2021, 34, 100630. [Google Scholar] [CrossRef]
- Ingersoll, D.T.; Houghton, Z.J.; Bromm, R.; Desportes, C. NuScale small modular reactor for Co-generation of electricity and water. Desalination 2014, 340, 84–93. [Google Scholar] [CrossRef]
- Song, D.; Li, Q.; Qin, D.; Dang, G.; Zeng, C.; Li, S.; Xiao, R.; Wei, X. Key Technology of ACP100: Reactor Core and Safety Design. Nucl. Power Eng. 2021, 42, 1–5. [Google Scholar]
- Haneklaus, N.; Qvist, S.; Gładysz, P.; Bartela, Ł. Why coal-fired power plants should get nuclear-ready. Energy 2023, 280, 128169. [Google Scholar] [CrossRef]
- Nian, V. Technology perspectives from 1950 to 2100 and policy implications for the global nuclear power industry. Prog. Nucl. Energy 2018, 105, 83–98. [Google Scholar] [CrossRef]
- Ingersoll, D.T. Deliberately small reactors and the second nuclear era. Prog. Nucl. Energy 2009, 51, 589–603. [Google Scholar] [CrossRef]
- Emerson, J.N.; Marrero-Jackson, E.H.; Nemets, G.A.; Okuniewski, M.A.; Wharry, J.P. Nuclear Reactor Pressure Vessel Welds: A Critical and Historical Review of Microstructures, Mechanical Properties, Irradiation Effects, and Future Opportunities. Mater. Des. 2024, 244, 113134. [Google Scholar] [CrossRef]
- Feng, J.; Guo, W.; Francis, J.; Irvine, N.; Li, L. Narrow gap laser welding for potential nuclear pressure vessel manufacture. J. Laser Appl. 2016, 28, 022421. [Google Scholar] [CrossRef]
- Meiners, F.; Ihne, J.; Jürgens, P.; Hemes, S.; Mathes, M.; Sizova, I.; Bambach, M.; Hama-Saleh, R.; Weisheit, A. New Hybrid Manufacturing Routes Combining Forging and Additive Manufacturing to Efficiently Produce High Performance Components from Ti-6Al-4V. Procedia Manuf. 2020, 47, 261–267. [Google Scholar] [CrossRef]
- Shen, S.; He, B.; Wang, H. Heterogeneous deformation behavior of hybrid manufactured high strength titanium alloy: Coordinate deformation and stress concentration. Mater. Sci. Eng. A 2022, 849, 143467. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, Y.; Li, J.; Cui, D.; Wang, Z.; Wang, J. Microstructure and mechanical properties of forging-additive hybrid manufactured Ti–6Al–4V alloys. Mater. Sci. Eng. A 2021, 811, 140984. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, H.; Fang, Y.; Wang, H. Microstructure and mechanical properties of hybrid fabricated 1Cr12Ni2WMoVNb steel by laser melting deposition. Chin. J. Aeronaut. 2013, 26, 481–486. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, J.; Tan, H.; Zhao, X.; Huang, W. Microstructure and Mechanical Properties of Laser Repaired TC4 Titanium Alloy. Xiyou Jinshu Cailiao Yu Gongcheng/Rare Met. Mater. Eng. 2017, 46, 1792–1797. [Google Scholar]
- Babu, A.; Ebrahimi, A.; Wu, K.-H.; Richardson, I.M.; Hermans, M.J.M. Local control of microstructure and mechanical properties of high-strength steel in electric arc-based additive manufacturing. J. Mater. Res. Technol. 2023, 26, 1508–1526. [Google Scholar] [CrossRef]
- Li, C.; Wang, Y.; Han, T.; Han, B.; Li, L. Microstructure and toughness of coarse grain heat-affected zone of domestic X70 pipeline steel during in-service welding. J. Mater. Sci. 2011, 46, 727–733. [Google Scholar] [CrossRef]
- Qi, X.; Du, L.; Hu, J.; Misra, R.D.K. Enhanced Impact Toughness of Heat Affected Zone in Gas Shield Arc Weld Joint of Low-C Medium-Mn High Strength Steel by Post-Weld Heat Treatment. Steel Res. Int. 2018, 89, 1700422. [Google Scholar] [CrossRef]
- Li, C.; Wang, Y.; Chen, Y. Influence of peak temperature during in-service welding of API X70 pipeline steels on microstructure and fracture energy of the reheated coarse grain heat-affected zones. J. Mater. Sci. 2011, 46, 6424–6431. [Google Scholar] [CrossRef]
- Ming, H.; Zhang, Z.; Wang, J.; Han, E.-H.; Wang, P.; Sun, Z. Microstructure of a safe-end dissimilar metal weld joint (SA508-52-316L) prepared by narrow-gap GTAW. Mater. Charact. 2017, 123, 233–243. [Google Scholar] [CrossRef]
- Wahlmann, B.; Körner, C.; Nunn, M. Electron beam wire cladding of nickel alloys and stainless steel on a reactor pressure vessel steel. Mater. Sci. Eng. A 2021, 811, 141082. [Google Scholar] [CrossRef]
- Li, Y.; Wu, S.; Wang, J.; Wang, H.; Kong, W.; Cheng, F. Microstructure homogeneity and strength-toughness balance in submerged arc additive manufactured Mn-Ni-Mo high-strength steel by unique intrinsic heat treatment. J. Mater. Process. Technol. 2022, 307, 117682. [Google Scholar] [CrossRef]
- Jiang, Z.; Li, Y.; Yang, Z.; Wang, P.; Li, D.; Li, Y. The tempering behavior of martensite/austenite islands on the mechanical properties of a low alloy Mn-Ni-Mo steel with granular bainite. Mater. Today Commun. 2021, 26, 102166. [Google Scholar] [CrossRef]
- Li, X.; Ding, Z.; Liu, C.; Bao, S.; Qian, H.; Xie, Y.; Gao, Z. Effects of temperature on the local fracture toughness behavior of Chinese SA508-III welded joint. Nucl. Eng. Technol. 2020, 52, 1732–1741. [Google Scholar] [CrossRef]
- Panicker, S.; Nagarajan, H.P.N.; Tuominen, J.; Patnamsetty, M.; Coatanéa, E.; Haapala, K.R. Investigation of thermal influence on weld microstructure and mechanical properties in wire and arc additive manufacturing of steels. Mater. Sci. Eng. A 2022, 853, 143690. [Google Scholar] [CrossRef]
- Zou, Z.; Simonelli, M.; Katrib, J.; Dimitrakis, G.; Hague, R. Refinement of the grain structure of additive manufactured titanium alloys via epitaxial recrystallization enabled by rapid heat treatment. Scr. Mater. 2020, 180, 66–70. [Google Scholar] [CrossRef]
- Cayron, C.; Artaud, B.; Briottet, L. Reconstruction of parent grains from EBSD data. Mater. Charact. 2006, 57, 386–401. [Google Scholar] [CrossRef]
- Gan, X.; Wan, X.; Zhang, Y.; Wang, H.; Li, G.; Xu, G.; Wu, K. Investigation of characteristic and evolution of fine-grained bainitic microstructure in the coarse-grained heat-affected zone of super-high strength steel for offshore structure. Mater. Charact. 2019, 157, 109893. [Google Scholar] [CrossRef]
- Sun, Y.L.; Hamelin, C.J.; Vasileiou, A.N.; Xiong, Q.; Flint, T.F.; Obasi, G.; Francis, J.A.; Smith, M.C. Effects of dilution on the hardness and residual stresses in multipass steel weldments. Int. J. Press. Vessel. Pip. 2020, 187, 104154. [Google Scholar] [CrossRef]
- Zhu, P.; Zhao, J.; Wang, G.; Shi, Y. Influence of Tempering Bead on Performance of Heat Affected Zone of Nickel-based Alloy Surfacing Layer for Nuclear Power Low Alloy Steel. China Surf. Eng. 2014, 27, 87–92. [Google Scholar]
- Ju, H.; Zhuo, S.; Liu, J.; Chen, Z.; Cui, H.; Wang, Y.; Li, S. Effects of long-term thermal aging on the microstructure and mechanical behaviors of 16MND5/Alloy 152 dissimilar metal weld. J. Mater. Res. Technol. 2022, 18, 3961–3970. [Google Scholar] [CrossRef]
- Chen, J.; Qiao, Y. Characteristic length scale in cleavage cracking across high-angle grain boundary. Comput. Mater. Sci. 2008, 42, 664–669. [Google Scholar] [CrossRef]
- Wang, X.L.; Wang, X.M.; Shang, C.J.; Misra, R.D.K. Characterization of the multi-pass weld metal and the impact of retained austenite obtained through intercritical heat treatment on low temperature toughness. Mater. Sci. Eng. A 2016, 649, 282–292. [Google Scholar] [CrossRef]
- Hong, S.; Song, J.; Kim, M.-C.; Choi, K.-J.; Lee, B.-S. Effects of microstructural variation on Charpy impact properties in heavy-section Mn-Mo-Ni low alloy steel for reactor pressure vessel. Met. Mater. Int. 2016, 22, 196–203. [Google Scholar] [CrossRef]
- Hong, S.; Min, K.-D.; Hyun, S.-M.; Kim, J.; Lee, Y.-S.; Kim, H.-D.; Kim, M.-C. Effect of cooling rate on mechanical properties of SA508 Gr.1A steels for main steam line piping in nuclear power plants. Int. J. Press. Vessel. Pip. 2021, 191, 104359. [Google Scholar] [CrossRef]
- Lee, K.-H.; Kim, M.-C.; Yang, W.-J.; Lee, B.-S. Evaluation of microstructural parameters controlling cleavage fracture toughness in Mn–Mo–Ni low alloy steels. Mater. Sci. Eng. A 2013, 565, 158–164. [Google Scholar] [CrossRef]
Voltage (V) | Current (A) | Travel Speed (mm/s) | Heat Input (J/mm) | Contact Tip-Substrate Distance (mm) | Interlayer Temperature (℃) | Wire Feed Rate (mm/s) |
---|---|---|---|---|---|---|
27 | 400 | 6 | 1800 | 28 | 100 | DCEP |
27 | 500 | 6 | 2250 | 28 | 100 | DCEP |
27 | 600 | 6 | 2700 | 28 | 100 | DCEP |
C | Mn | Si | S | P | Cr | Ni | Mo | Fe | |
---|---|---|---|---|---|---|---|---|---|
Feedstock S3NiMo1 | 0.10 | 1.72 | 0.24 | 0.002 | 0.009 | 0.01 | 0.97 | 0.54 | Bal. |
Substrate 16MnD5 | 0.15 | 1.35 | 0.20 | 0.005 | 0.008 | 0.13 | 0.65 | 0.50 | Bal. |
Additive wall | 0.06 | 1.89 | 0.36 | 0.001 | 0.011 | 0.03 | 0.93 | 0.54 | Bal. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chi, Q.; Hu, M.; Wang, J.; Yan, S.; Xue, M.; Wu, S.; Cheng, F. Forging-Submerged Arc Additive Hybrid Manufacturing of the Mn-Mo-Ni Component: In Situ Reheat Cycles Inducing the Homogenization of the HAZ Microstructure. Materials 2025, 18, 20. https://doi.org/10.3390/ma18010020
Chi Q, Hu M, Wang J, Yan S, Xue M, Wu S, Cheng F. Forging-Submerged Arc Additive Hybrid Manufacturing of the Mn-Mo-Ni Component: In Situ Reheat Cycles Inducing the Homogenization of the HAZ Microstructure. Materials. 2025; 18(1):20. https://doi.org/10.3390/ma18010020
Chicago/Turabian StyleChi, Qiang, Meijuan Hu, Jun Wang, Shuai Yan, Manye Xue, Shaojie Wu, and Fangjie Cheng. 2025. "Forging-Submerged Arc Additive Hybrid Manufacturing of the Mn-Mo-Ni Component: In Situ Reheat Cycles Inducing the Homogenization of the HAZ Microstructure" Materials 18, no. 1: 20. https://doi.org/10.3390/ma18010020
APA StyleChi, Q., Hu, M., Wang, J., Yan, S., Xue, M., Wu, S., & Cheng, F. (2025). Forging-Submerged Arc Additive Hybrid Manufacturing of the Mn-Mo-Ni Component: In Situ Reheat Cycles Inducing the Homogenization of the HAZ Microstructure. Materials, 18(1), 20. https://doi.org/10.3390/ma18010020