Enhanced Photoelectrocatalytic Performance of ZnO Nanowires for Green Hydrogen Production and Organic Pollutant Degradation
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Chemicals
2.2. Cleaning and Preparation of Zn Foil
2.3. Electropolishing of Zn Foil
2.4. Anodic Oxidation to Fabricate Zn/ZnO Nanowire Electrodes
2.5. Photocatalytic Measurements for Degradation of Organic Waste Water
2.6. Photoelectrochemical Measurements for Water Oxidation
2.7. Structural Characterization
3. Results and Discussion
3.1. Structure of Zn/ZnO Electrodes
3.2. PFC Performance of Zn/ZnO Electrodes
3.3. Photocatalytic Performance for Degradation of Organic Waste Water
3.4. Proposed Mechanism for Photoelectrochemical and Photocatalytic Performance
3.4.1. Light Only
3.4.2. Voltage Only
3.4.3. Combined Light and 1.0 V vs. RHE
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mona, S.; Kumar, S.S.; Kumar, V.; Parveen, K.; Saini, N.; Deepak, B.; Pugazhendhi, A. Green technology for sustainable biohydrogen production (waste to energy): A review. Sci. Total Environ. 2020, 728, 138481. [Google Scholar] [CrossRef] [PubMed]
- Ng, W.C.; Yaw, C.S.; Shaffee, S.N.A.; Samad, N.A.A.; Koi, Z.K.; Chong, M.N. Elevating the prospects of green hydrogen (H2) production through solar-powered water splitting devices: A systematic review. Sustain. Mater. Technol. 2024, 40, e00972. [Google Scholar] [CrossRef]
- Kusworo, T.D.; Budiyono; Kumoro, A.C.; Utomo, D.P. Photocatalytic nanohybrid membranes for highly efficient wastewater treatment: A comprehensive review. J. Environ. Manag. 2022, 317, 115357. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Wen, W.; Ou, J.Z. Construction of adsorbents with graphene and its derivatives for wastewater treatment: A review. Environ. Sci. Nano 2022, 9, 3226–3276. [Google Scholar] [CrossRef]
- Kampouri, S.; Stylianou, K.C. Dual-Functional Photocatalysis for Simultaneous Hydrogen Production and Oxidation of Organic Substances. ACS Catal. 2019, 9, 4247–4270. [Google Scholar] [CrossRef]
- Jeon, T.H.; Koo, M.S.; Kim, H.; Choi, W. Dual-Functional Photocatalytic and Photoelectrocatalytic Systems for Energy- and Resource-Recovering Water Treatment. ACS Catal. 2018, 8, 11542–11563. [Google Scholar] [CrossRef]
- Raza, W.; Ahmad, K. ZnO Nanostructures for Photocatalytic Dye Degradation Under Visible Light Irradiation. In Environmental Nanotechnology for Water Purification; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2020; pp. 259–284. [Google Scholar] [CrossRef]
- Batista-Grau, P.; Sánchez-Tovar, R.; Fernández-Domene, R.M.; García-Antón, J. ZnO nanostructures: Synthesis by anodization and applications in photoelectrocatalysis. Rev. Chem. Eng. 2022, 38, 1065–1088. [Google Scholar] [CrossRef]
- Kegel, J. Fabrication and characterization of ZnO-based water splitting devices by atomic layer deposition and hydrothermal synthesis. Ph.D. Thesis, University College Cork, Cork, Ireland, 2018. [Google Scholar]
- Kumar, S.G.; Koteswara Rao, K.S.R. Zinc oxide based photocatalysis: Tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications. RSC Adv. 2015, 5, 3306–3351. [Google Scholar] [CrossRef]
- Barzinjy, A.; Hamad, S.; Azeez, H. Structure, Synthesis and Applications of ZnO Nanoparticles: A Review. Jordan J. Appl. Sci. 2020, 13, 123–135. [Google Scholar]
- Yuan, J.; Huang, X.; Zhang, L.; Gao, F.; Lei, R.; Jiang, C.; Feng, W.; Liu, P. Tuning piezoelectric field for optimizing the coupling effect of piezo-photocatalysis. Appl. Catal. B Environ. 2020, 278, 119291. [Google Scholar] [CrossRef]
- Vairale, P.; Sharma, V.; Bade, B.; Waghmare, A.; Shinde, P.; Punde, A.; Doiphode, V.; Aher, R.; Pandharkar, S.; Nair, S.; et al. Melanin Sensitized Nanostructured ZnO Photoanodes for Efficient Photoelectrochemical Splitting of Water: Synthesis and Characterization. Eng. Sci. 2020, 11, 76–84. [Google Scholar] [CrossRef]
- Lim, F.S.; Tan, S.T.; Zhu, Y.; Chen, J.-W.; Wu, B.; Yu, H.; Kim, J.-M.; Ginting, R.T.; Lau, K.S.; Chia, C.H.; et al. Tunable Plasmon-Induced Charge Transport and Photon Absorption of Bimetallic Au-Ag Nanoparticles on ZnO Photoanode for Photoelectrochemical Enhancement under Visible Light. J. Phys. Chem. C 2020, 124, 14105–14117. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, L.; Chen, C. Yttrium doping enhances the photoelectrochemical water splitting performance of ZnO nanorod array films. J. Alloys Compd. 2022, 896, 163144. [Google Scholar] [CrossRef]
- Lin, Y.; Liu, S. Robust ZnO nanowire photoanodes with oxygen vacancies for efficient photoelectrochemical cathodic protection. Appl. Surf. Sci. 2021, 566, 150694. [Google Scholar] [CrossRef]
- Ning, X.; Hao, A.; Chen, R.; Khan, M.F.; Jia, D. Constructing of GQDs/ZnO S-scheme heterojunction as efficient piezocatalyst for environmental remediation and understanding the charge transfer mechanism. Carbon 2024, 218, 118772. [Google Scholar] [CrossRef]
- Li, S.; Cai, M.; Liu, Y.; Wang, C.; Yan, R.; Chen, X. Constructing Cd0.5Zn0.5S/Bi2WO6 S-scheme heterojunction for boosted photocatalytic antibiotic oxidation and Cr(VI) reduction. Adv. Powder Mater. 2023, 2, 100073. [Google Scholar] [CrossRef]
- Mika, K.; Wiercigroch, E.; Pisarek, M.; Kozieł, M.; Majda, D.; Lytvynenko, A.S.; Sulka, G.D.; Zaraska, L. Nanostructured films formed on Zn during anodic oxidation in different carbonate-based electrolytes. Appl. Surf. Sci. 2023, 623, 157102. [Google Scholar] [CrossRef]
- Zaraska, L.; Mika, K.; Syrek, K.; Sulka, G.D. Formation of ZnO nanowires during anodic oxidation of zinc in bicarbonate electrolytes. J. Electroanal. Chem. 2017, 801, 511–520. [Google Scholar] [CrossRef]
- Zaraska, L.; Mika, K.; Zych, M.; Sulka, G.D. Chapter twelve—Anodic formation of zinc oxide nanostructures with various morphologies. In Nanostructured Anodic Metal Oxides; Elsevier: Amsterdam, The Netherlands, 2020; pp. 385–414. [Google Scholar] [CrossRef]
- Ravanbakhsh, A.; Rashchi, F.; Sohi, M.H.; Nekouei, R.K. Synthesis of Nanostructured Zinc Oxide Thin Films by Anodic Oxidation Method. Adv. Mater. Res. 2014, 829, 347–351. [Google Scholar] [CrossRef]
- Duan, S.-F.; Ji, Y.-F.; Wang, W.; Han, D.-F.; Wang, H.-Y.; Wei, Q.-Y.; Li, C.-F.; Jia, F.; Han, D.-X.; Niu, L.; et al. Unraveling the Impact of Electrochemically Created Oxygen Vacancies on the Performance of ZnO Nanowire Photoanodes. ACS Sustain. Chem. Eng. 2019, 7, 18165–18173. [Google Scholar] [CrossRef]
- Gurylev, V.; Perng, T.P. Defect engineering of ZnO: Review on oxygen and zinc vacancies. J. Eur. Ceram. Soc. 2021, 41, 4977–4996. [Google Scholar] [CrossRef]
- Niu, L.; Hong, S.; Wang, M. Properties of ZnO with Oxygen Vacancies and Its Application in Humidity Sensor. J. Electron. Mater. 2021, 50, 4480–4487. [Google Scholar] [CrossRef]
- Salih, A.K.; Phillips, M.R.; Ton-That, C. Enhanced solar-driven water splitting performance using oxygen vacancy rich ZnO photoanodes. Sol. Energy Mater. Sol. Cells 2023, 259, 112436. [Google Scholar] [CrossRef]
- Liu, Y.; Jian-er, Z.; Larbot, A.; Persin, M. Preparation and characterization of nano-zinc oxide. J. Mater. Process. Technol. 2007, 189, 379–383. [Google Scholar] [CrossRef]
- Decremps, F.; Datchi, F.; Saitta, A.M.; Polian, A.; Pascarelli, S.; Di Cicco, A.; Itié, J.P.; Baudelet, F. Local structure of condensed zinc oxide. Phys. Rev. B 2003, 68, 104101. [Google Scholar] [CrossRef]
- Yu, J.; Kim, J. Preparation of uniform gold nanoparticles of different quantity deposited on zinc oxide nanorods for photoelectrochemical water splitting. Chemosphere 2022, 287, 132168. [Google Scholar] [CrossRef]
- Malevu, T.D.; Ocaya, R.O. Synthesis of ZnO nanoparticles using a zinc-air cell and investigation of the effect of electrolyte concentration. Int. J. Electrochem. Sci. 2014, 9, 8011–8023. [Google Scholar] [CrossRef]
- Kandulna, R.; Choudhary, R.B. Concentration-dependent behaviors of ZnO-reinforced PVA–ZnO nanocomposites as electron transport materials for OLED application. Polym. Bull. 2018, 75, 3089–3107. [Google Scholar] [CrossRef]
- Zhang, W.; Ren, Z.; Guo, Y.; He, X.; Li, X. Improved the long-term air stability of ZnO-based perovskite solar cells prepared under ambient conditions via surface modification of the electron transport layer using an ionic liquid. Electrochim. Acta 2018, 268, 539–545. [Google Scholar] [CrossRef]
- Liu, R.; Zheng, Z.; Spurgeon, J.; Yang, X. Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers. Energy Environ. Sci. 2014, 7, 2504–2517. [Google Scholar] [CrossRef]
- Ghobadi, A.; Ghobadi, T.G.U.; Karadas, F.; Ozbay, E. Angstrom Thick ZnO Passivation Layer to Improve the Photoelectrochemical Water Splitting Performance of a TiO2 Nanowire Photoanode: The Role of Deposition Temperature. Sci. Rep. 2018, 8, 16322. [Google Scholar] [CrossRef] [PubMed]
- Commandeur, D.; Brown, G.; Hills, E.; Spencer, J.; Chen, Q. Defect-Rich ZnO Nanorod Arrays for Efficient Solar Water Splitting. ACS Appl. Nano Mater. 2019, 2, 1570–1578. [Google Scholar] [CrossRef]
- Govatsi, K.; Syrrokostas, G.; Yannopoulos, S.N.; Neophytides, S.G. Optimization of aluminum doped ZnO nanowires for photoelectrochemical water splitting. Electrochim. Acta 2021, 392, 138995. [Google Scholar] [CrossRef]
- Han, J.; Xing, H.; Song, Q.; Yan, H.; Kang, J.; Guo, Y.; Liu, Z. A ZnO@CuO core-shell heterojunction photoanode modified with ZnFe-LDH for efficient and stable photoelectrochemical performance. Dalton Trans. 2021, 50, 4593–4603. [Google Scholar] [CrossRef]
- Li, H.; Li, X.; Dong, W.; Xi, J.; Du, G.; Ji, Z. Cu nanoparticles hybridized with ZnO thin film for enhanced photoelectrochemical oxygen evolution. J. Alloys Compd. 2018, 768, 830–837. [Google Scholar] [CrossRef]
- Chen, C.K.; Shen, Y.-P.; Chen, H.M.; Chen, C.-J.; Chan, T.-S.; Lee, J.-F.; Liu, R.-S. Quantum-Dot-Sensitized Nitrogen-Doped ZnO for Efficient Photoelectrochemical Water Splitting. Eur. J. Inorg. Chem. 2014, 2014, 773–779. [Google Scholar] [CrossRef]
- Liu, Y.; Yan, X.; Kang, Z.; Li, Y.; Shen, Y.; Sun, Y.; Wang, L.; Zhang, Y. Synergistic Effect of Surface Plasmonic particles and Surface Passivation layer on ZnO Nanorods Array for Improved Photoelectrochemical Water Splitting. Sci. Rep. 2016, 6, 29907. [Google Scholar] [CrossRef]
- Wang, S.; Liu, P.; Meng, C.; Wang, Y.; Zhang, L.; Pan, L.; Yin, Z.; Tang, N.; Zou, J.-J. Boosting photoelectrochemical water splitting by Au@Pt modified ZnO/CdS with synergy of Au-S bonds and surface plasmon resonance. J. Catal. 2022, 408, 196–205. [Google Scholar] [CrossRef]
- Bai, L.; Jia, S.; Gao, Y.; Li, C.; Chen, X.; Zhou, S.; Han, J.; Yang, F.; Zhang, X.; Lu, S. A p-n WO/SnSe Heterojunction for Efficient Photo-assisted Electrocatalysis of the Oxygen Evolution Reaction. Energy Environ. Mater. 2023, 6, e12456. [Google Scholar] [CrossRef]
- Mardikar, S.P.; Kulkarni, S.; Adhyapak, P.V. Sunlight driven highly efficient degradation of methylene blue by CuO-ZnO nanoflowers. J. Environ. Chem. Eng. 2020, 8, 102788. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, M.; You, B.; Zhang, Q.; Yuan, H.; Ostrikov, K. Oxygen Vacancy-Mediated ZnO Nanoparticle Photocatalyst for Degradation of Methylene Blue. Appl. Sci. 2018, 8, 353. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, Y.; Jing, C.; Zhang, H.; Shao, Q.; Ge, R. A visible-light active p-n heterojunction ZnO/Co3O4 composites supported on Ni foam as photoanode for enhanced photoelectrocatalytic removal of methylene blue. Adv. Compos. Hybrid Mater. 2022, 5, 2406–2420. [Google Scholar] [CrossRef]
- Intarasuwan, K.; Amornpitoksuk, P.; Suwanboon, S.; Graidist, P. Photocatalytic dye degradation by ZnO nanoparticles prepared from X2C2O4 (X = H, Na and NH4) and the cytotoxicity of the treated dye solutions. Sep. Purif. Technol. 2017, 177, 304–312. [Google Scholar] [CrossRef]
- Flores, N.M.; Pal, U.; Galeazzi, R.; Sandoval, A. Effects of morphology, surface area, and defect content on the photocatalytic dye degradation performance of ZnO nanostructures. RSC Adv. 2014, 4, 41099–41110. [Google Scholar] [CrossRef]
- Udayabhanu; Nagaraju, G.; Nagabhushana, H.; Basavaraj, R.B.; Raghu, G.K.; Suresh, D.; Rajanaika, H.; Sharma, S.C. Green, Nonchemical Route for the Synthesis of ZnO Superstructures, Evaluation of Its Applications toward Photocatalysis, Photoluminescence, and Biosensing. Cryst. Growth Des. 2016, 16, 6828–6840. [Google Scholar] [CrossRef]
- Balcha, A.; Yadav, O.P.; Dey, T. Photocatalytic degradation of methylene blue dye by zinc oxide nanoparticles obtained from precipitation and sol-gel methods. Environ. Sci. Pollut. Res. Int. 2016, 23, 25485–25493. [Google Scholar] [CrossRef]
- Yaqoob, A.A.; binti Mohd Noor, N.H.; Serrà, A.; Mohamad Ibrahim, M.M. Advances and Challenges in Developing Efficient Graphene Oxide-Based ZnO Photocatalysts for Dye Photo-Oxidation. Nanomaterials 2020, 10, 932. [Google Scholar] [CrossRef]
- Pantò, F.; Dahrouch, Z.; Saha, A.; Patanè, S.; Santangelo, S.; Triolo, C. Photocatalytic degradation of methylene blue dye by porous zinc oxide nanofibers prepared via electrospinning: When defects become merits. Appl. Surf. Sci. 2021, 557, 149830. [Google Scholar] [CrossRef]
- Luan, N.H.; Yang, Y.-T.; Chang, C.-F. Electrochemical degradation of methylene blue accompanied with the reduction of CO2 by using carbon nanotubes grown on carbon fiber electrodes. Sustain. Environ. Res. 2022, 32, 13. [Google Scholar] [CrossRef]
- Yusuf, T.L.; Orimolade, B.O.; Masekela, D.; Mamba, B.; Mabuba, N. The application of photoelectrocatalysis in the degradation of rhodamine B in aqueous solutions: A review. RSC Adv. 2022, 12, 26176–26191. [Google Scholar] [CrossRef]
- Dao, T.D.; Han, G.; Arai, N.; Nabatame, T.; Wada, Y.; Hoang, C.V.; Aono, M.; Nagao, T. Plasmon-mediated photocatalytic activity of wet-chemically prepared ZnO nanowire arrays. Phys. Chem. Chem. Phys. 2015, 17, 7395–7403. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.V.; Alsaiari, M.; Harraz, F.A.; Nabgan, W.; Nguyen, D.T.D.; Nguyen, C.V. Taguchi L9 (34) Orthogonal Array Design for Photocatalytic Degradation of Methylene Blue Dye by Green ZnO Particles Biosynthesized by Chrysanthemum spp. Flower Extract. Water 2023, 15, 2186. [Google Scholar] [CrossRef]
- Celebi, N.; Aydin, M.Y.; Soysal, F.; Ciftci, Y.O.; Salimi, K. Ligand-free fabrication of Au/TiO2 nanostructures for plasmonic hot-electron-driven photocatalysis: Photoelectrochemical water splitting and organic-dye degradation. J. Alloys Compd. 2021, 860, 157908. [Google Scholar] [CrossRef]
- Paul, D.R.; Sharma, R.; Singh, S.; Singh, P.; Panchal, P.; Sharma, A.; Devi, P.; Nehra, S.P. Mg/Li Co-doped g-C3N4: An excellent photocatalyst for wastewater remediation and hydrogen production applications towards sustainable development. Int. J. Hydrog. Energy 2023, 48, 37746–37761. [Google Scholar] [CrossRef]
- Singh, P.; Devi, P. Deciphering the photoelectrochemical behaviour of MoSe2-decorated BiVO4 as a dual system for concurrent degradation of methylene blue and hydrogen generation. J. Clean. Prod. 2024, 448, 141502. [Google Scholar] [CrossRef]
- Sharma, S.; Kumar, D.; Khare, N. Hierarchical PANI/CdS nanoarchitecture system for visible light induced photocatalytic dye degradation and photoelectrochemical water splitting. Polymer 2021, 231, 124117. [Google Scholar] [CrossRef]
Electrode | Rs (K·Ohm·cm2) in Dark | Rct (K·Ohm·cm2) in Dark | Rs (K·Ohm·cm2) in Light | Rct (K·Ohm·cm2) in Light |
---|---|---|---|---|
Zn foil | 0.1 | 10 | 0.02 | 0.36 |
Zn/ZnO-1 min | 0.0144 | 0.0186 | 0.013 | 0.0087 |
Zn/ZnO-5 min | 0.0133 | 0.0087 | 0.001 | 0.0055 |
Zn/ZnO-10 min | 0.0143 | 0.0123 | 0.0143 | 0.0123 |
Photoanodes | Preparation Method | I (mA cm−2) @ 1.23 V vs. RHE | Electrolyte | Light Source | Ref. |
---|---|---|---|---|---|
ZnO nanorods | Chemical synthesis | 0.705 | 0.5 M Na2SO4 | AM 1.5 G (100 mW/cm2) | [35] |
ZnO nanowires | Chemical bath deposition | 0.15 | 0.1 M NaOH | UV lamp (11.5 mW/cm2) | [36] |
ZnO nanorods | Dip coating | 0.39 | 0.5 M Na2SO4 | Xe lamp (100 mW/cm2) | [37] |
ZnO thin films | Sol–gel spin coating | 0.005 at 1.00 V | 0.5 M Na2SO4 | 500 W Xe lamp + AM 1.5 G filter (UV-Vis-NIR) 100 mW/cm2 | [14] |
ZnO thin films | DC magnetron sputtering | 0.05 | 0.5 M Na2SO4 | AM 1.5 G solar | [38] |
ZnO nanowires | Hydrothermal | 0.03 | 0.1 M Na2S + 0.2 M NaOH | 500 W Xe lamp | [16] |
ZnO Nanorod array films | Hydrothermal | 0.28 | 0.1 M Na2SO4 | AM 1.5 G (100 mW/cm2) | [15] |
ZnO nanowires with oxygen vacancies | Electrochemical method | 1.2 | 0.5 M Na2SO4 | AM1.5 G, 100 mW/cm2 | [23] |
ZnO nanorods films with oxygen vacancies | Oxidation of Zn films | 1.14 | 0.5 M Na2SO4 | AM1.5 G, 100 mW/cm2 | [26] |
ZnO nanowires with oxygen vacancies | Anodic oxidation | 1.18 | 0.5 M Na2SO4 | AM1.5 G, 100 mW/cm2 | This work |
Photocatalysts | Preparation Method | Degradation Rate Constant Min−1 | Light Source | Ref. |
---|---|---|---|---|
ZnO/Co3O4 | Liquid deposition | 1.74 | A xenon lamp (300 W, λ = 320–1100 nm) | [45] |
ZnO nanostructures | Decomposition of ZnC2O4·2H2O | 0.043 | 18 W Black light | [46] |
ZnO nanostructures | Ultrasound-assisted hydrolysis | 0.0209 | 10 W UV light | [47] |
ZnO superstructures | Thermal decomposition of zinc nitrate | 80% degradation in 180 min | 120 W UV light | [48] |
ZnO nanoparticles | Sol–gel | 0.0084 | UV lamp (Philips, 12 W) | [49] |
Zn/ZnO-5 min | Anodic oxidation | 0.4211 | AM1.5 G, 100 mW/cm2 | This work |
Catalyst | Hydrogen Production (mA/cm2 at 1.23 V vs. RHE) | Dye Degradation Rate Constant min−1 | Stability | Ref. |
---|---|---|---|---|
TiO2 | 1.87 (doped with Au) at E/0.187 V and bare TiO2 (0.28 at the same E) | 0.006 | Not mentioned | [56] |
g-C3N4 | 0.1258 | 0.04411 | ~20,000 s and no change in photocurrent | [57] |
BiVO4 | 0.14 | 0.00545 | 1 h and no change in photocurrent | [58] |
CdS | ~1.49 mA/cm2 at 1 V vs. Ag/AgCl | 0.01 | Not mentioned | [59] |
Zn/ZnO | 1.18 | 0.4211 | 24 h and no change in photocurrent | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Abass, N.; Qahtan, T.F.; Alansi, A.M.; Bubshait, A.; Al-Ghamdi, M.; Albu, Z.; Albasiry, N.S.; Aljahfal, H.M.; Aldossary, A.E.; Faraj, M.T. Enhanced Photoelectrocatalytic Performance of ZnO Nanowires for Green Hydrogen Production and Organic Pollutant Degradation. Materials 2025, 18, 444. https://doi.org/10.3390/ma18020444
Al Abass N, Qahtan TF, Alansi AM, Bubshait A, Al-Ghamdi M, Albu Z, Albasiry NS, Aljahfal HM, Aldossary AE, Faraj MT. Enhanced Photoelectrocatalytic Performance of ZnO Nanowires for Green Hydrogen Production and Organic Pollutant Degradation. Materials. 2025; 18(2):444. https://doi.org/10.3390/ma18020444
Chicago/Turabian StyleAl Abass, Nawal, Talal F. Qahtan, Amani M. Alansi, Almqdad Bubshait, Maria Al-Ghamdi, Zahra Albu, Noof Soltan Albasiry, Hisham Mohammed Aljahfal, Abdulrahman E. Aldossary, and Mohammed Tariq Faraj. 2025. "Enhanced Photoelectrocatalytic Performance of ZnO Nanowires for Green Hydrogen Production and Organic Pollutant Degradation" Materials 18, no. 2: 444. https://doi.org/10.3390/ma18020444
APA StyleAl Abass, N., Qahtan, T. F., Alansi, A. M., Bubshait, A., Al-Ghamdi, M., Albu, Z., Albasiry, N. S., Aljahfal, H. M., Aldossary, A. E., & Faraj, M. T. (2025). Enhanced Photoelectrocatalytic Performance of ZnO Nanowires for Green Hydrogen Production and Organic Pollutant Degradation. Materials, 18(2), 444. https://doi.org/10.3390/ma18020444